首页|基于深度学习的工业缺陷检测研究进展

基于深度学习的工业缺陷检测研究进展

扫码查看
基于深度学习的机器视觉技术在工业缺陷检测上具有重要的应用价值,相较于传统方法可显著提高检测质量和效率,同时降低人工成本.通过分析近年来深度学习在缺陷检测方面的研究与应用,归纳其难点与相关的解决方法,将问题分为缺陷数据集在建立过程中存在的问题与检测模型的选择两个方面.首先,在数据层面,针对缺陷的样本少、数据标注类型复杂、数据成像质量低等问题,对应分析了少样本学习,无监督、半监督、自监督、弱监督学习以及数据增强、图像增强、图像翻译的应用;其次,在检测算法模型的选择上,根据模型类型的不同,分为基于CNN、基于Transformer以及混合模型3类进行讨论,同时根据检测任务需求的不同,又分别从图像分类、目标检测、语义分割3个方面展开论述.此外,总结了工业上常用的轻量化模型的设计方法.最后,对该领域未来的发展方向进行了讨论与展望.
Research Progress in Industrial Defect Detection Based on Deep Learning
Machine vision technology based on deep learning has important application value in industrial defect detection,which can significantly improve detection quality,efficiency and reduce labor costs compared to traditional methods.By collecting the re-search and application information of deep learning in defect detection in recent years,the difficulties and related solutions are summarized,and the problems are divided into two aspects:the problem of establishing defect datasets and the selection of detec-tion models.First,at the data aspect,aiming at the problems of few samples of defects,data labeling,and low quality of data ima-ging,this paper correspondingly analyzes the applications of small sample learning,unsupervised,semi-supervised,self-supervised and weak-supervised learning,data augmentation,image enhancement and image translation.Then,in the selection of neural net-work models,according to the different types of models,they are divided into three categories:CNN based,Transformer based,and mixture model for discussion.According to different detection requirements,they are divided into three types of models:clas-sification,detection,and segmentation.In addition,the design methods of lightweight models are summarized.Finally,the future development direction is discussed and prospected.

Deep learningMachine visionDefect detectionNeural network

洪景山、祝颖丹、宋康康、吕东喜、陈明达、胡海根

展开 >

浙江工业大学计算机科学与技术学院、软件学院 杭州 310014

中国科学院宁波材料技术与工程研究所浙江省机器人与智能制造装备技术重点实验室 浙江宁波 315201

深度学习 机器视觉 缺陷检测 神经网络

国家自然科学基金浙江省自然科学基金宁波市科技创新2025重大专项宁波市科技创新2025重大专项宁波市科技创新2025重大专项宁波市科技创新2025重大专项

U21A20165LD22E0500112021Z1242021Z1262021Z0262018B10076

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(10)