首页|基于联合增强图像对的红外可见光深度展开图像融合网络

基于联合增强图像对的红外可见光深度展开图像融合网络

扫码查看
受到采集环境的影响,红外可见光融合图像有时会存在亮度不足、细节信息不够的问题.为此,提出了一种基于联合增强图像对的红外可见光深度展开图像融合网络,同时将原始红外-可见光图像对和红外-可见光图像增强对作为输入,提高网络信息融合能力.文中首先提出了一种残差展开模块,在此基础上构建了基于迭代的残差展开卷积网络用于特征提取,使其根据不同的初始化参数提取对应图像的背景和细节信息.此外,在特征融合卷积融合网络中引入了维度拼接操作和上下采样卷积块,实现联合红外-可见光图像增强对的特性汇聚,最大限度地保留源图像的差异特征.同时,优化了损失函数权重设计,以获得最佳的融合结果.在多个数据库上进行了大量实验,结果表明,与现有典型的融合方法相比,所提算法的融合图像在主观视觉和客观指标评价上均具有较好性能,在暗照度环境下优于其他方法.
Infrared and Visible Deep Unfolding Image Fusion Network Based on Joint Enhancement Image Pairs
Under unfavorable circumstances,the fused image of the infrared and visible images sometimes suffers from low brightness and insufficient details.Therefore,a novel infrared and visible deep unfolding image fusion network based on joint en-hancement image pairs is proposed.To increase input information,both the original infrared/visible image pair and their enhance-ment pair are used as deep network's input.Firstly,an iterative residual unfolding convolutional network based on deep residual unfolding module is developed to obtain the background features or detail features according to different initialization network pa-rameters.Then,concatenate operation and up-down sampling pair are introduced to the convolutional feature fusion network,where features of the corresponding enhancement image pairs can be added to fusion task and the discrepant features of raw ima-ges are maximumly retained.Meanwhile,the loss function is optimized to obtain better results.Numerous experiments on multiple datasets demonstrate that the proposed method can get competitive fusion images both in terms of subjective evaluation and ob-jective metrics,and have better performance under low light environments.

Image fusionDeep algorithm unrolling networkImage enhancementFeature extractionFeature fusion

袁天蕙、干宗良

展开 >

南京邮电大学通信与信息工程学院 南京 210003

图像融合 深度算法展开网络 图像增强 特征提取 特征融合

国家自然科学基金

61471201

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(10)