首页|基于锐度感知增强卷积神经网络的变工况机械故障诊断

基于锐度感知增强卷积神经网络的变工况机械故障诊断

扫码查看
传统的深度迁移学习网络从有标签的源域故障数据中学习并迁移知识,完成无标签目标域上的诊断任务,有效解决了机械故障诊断中变工况场景面临的数据特征空间非对称问题.然而其知识迁移模块加剧了深度学习网络结构的复杂性,导致其损失函数的地貌特征比浅层网络复杂得多,优化难度更高.传统方法无法感知损失函数的地貌特征,容易使模型参数陷入参数泛化间隙大的局部最小值处,导致模型泛化性差,诊断精度降低.为了应对这一挑战,研究提出锐度感知增强的卷积神经网络(Sharpness Awareness Reinforced Convolutional Neural Network,SA-CNN),通过感知一定范围内模型损失函数的锐度,联合优化损失函数与其地貌特征的平坦程度,约束模型参数向损失函数锐度降低的方向收敛,进而提升模型的泛化性能.经典机械故障诊断数据集上的实验结果表明,相比传统的深度迁移模型,所提方法在变工况场景下进行跨域机械故障诊断时性能提升显著.
Mechanical Fault Diagnosis Under Variable Working Conditions Based on Sharpness Awareness Reinforced Convolutional Neural Network
Traditional deep transfer learning networks have effectively addressed the challenges arising from the asymmetry intro-duced by cross-domain data distributions in variable operational scenarios.It is achieved by leveraging knowledge learned from la-beled fault data and applying it to the task of diagnosing unlabeled fault data collected under varying conditions.However,the in-clusion of knowledge transfer modules has added complexity to the deep network's structure,resulting in a more intricate loss landscape.This,in turn,presents challenges for optimization.Traditional methods often struggle to navigate the sharpness of this loss landscape,leading to the model's parameters getting stuck in local minima characterized by high sharpness.This hinders model generalization and reduces accuracy.To tackle this challenge,this paper proposes the sharpness awareness reinforced con-volutional neural network(SA-CNN).This approach involves a joint optimization of the loss function and its flatness by assessing sharpness within a specified range.This process steers the fault diagnosis model parameters away from regions of high sharpness,ultimately improving model generalization.Extensive experiments on established mechanical fault diagnosis datasets demonstrate that,compared to traditional deep transfer learning-based fault diagnosis models,the proposed SA-CNN significantly enhances the performance of bearing fault diagnosis under varying working conditions.

Bearing fault diagnosisLoss function landscape analysisTransfer learningConvolutional neural network

范家源、徐德胜、罗灵鲲、胡士强

展开 >

上海交通大学航空航天学院 上海 200240

大型客机集成技术与模拟飞行全国重点实验室 上海 201210

轴承故障诊断 损失函数地貌分析 迁移学习 卷积神经网络

国家自然科学基金国家自然科学基金中国航空科学基金中国航空科学基金

61773262620061522022Z07105700220142057006

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(10)