首页|零边界条件下一维非线性细胞自动机可逆性的判定算法

零边界条件下一维非线性细胞自动机可逆性的判定算法

扫码查看
可逆性的性质对于经典的计算机科学理论模型——细胞自动机(Cellular Automata,CA)具有重要意义.尽管CA在零边界条件下的线性规则的可逆性问题已经得到了大量的研究,但非线性规则目前还很少被探索.文中研究了在有限域Zp上一般一维CA的可逆性问题,找到了一种优化Amoroso无限CA满射性判定算法的方法.基于此,文中还提出了在零边界条件下判定一维CA可逆性的算法,其中包括一种在零边界条件下判定一维CA严格可逆性的算法,以及一种基于桶链的在零边界条件下计算一维CA的可逆性函数的算法.这些判定算法不仅适用于线性规则,也适用于非线性规则.除此以外,还证实了可逆性函数总是有一个周期的,且其周期性与对应桶链的周期性有关.文中给出了一些可逆CA的实验结果,并通过实验结果对理论部分进行了补充验证,进一步支持了文章的研究结论.
Decision Algorithms for Reversibility of One-dimensional Non-linear Cellular Automata Under Null Boundary Conditions
The property of reversibility is quite meaningful for the classic theoretical computer science model,cellular automata.For the reversibility problem for a CA under null boundary conditions,while linear rules have been extensively studied,the non-linear rules have so far been rarely explored.The paper investigates the reversibility problem of general one-dimensional CA on a finite field Zp,and proposes an approach to optimize the Amoroso's infinite CA surjectivity detection algorithm.Based on this,this paper proposes an algorithm for determining the invertibility of one-dimensional CA under zero boundary conditions,inclu-ding an algorithm for determining the strict invertibility of one-dimensional CA under zero boundary conditions,and an algorithm for calculating the invertibility function of one-dimensional CA under zero boundary conditions based on barrel chain.These deci-sion algorithms work for not only linear rules but also non-linear rules.In addition,it has been confirmed that the reversibility function always has a period,and its periodicity is related to the periodicity of the corresponding bucket chain.Some of the experi-ment results of reversible CA are presented in this paper,complementing and validating the theoretical aspects,and thereby fur-ther supporting the research conclusions of this paper.

Cellular automataNon-linear rulesReversibilityNull boundaryOne-dimensional

马骏驰、陈伟霖、王晨、林德福、王超

展开 >

南开大学软件学院 天津 300350

细胞自动机 非线性规则 可逆性 零边界 一维

天津市自然科学基金

21JCYBJC00210

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(10)