首页|基于多关系视图轴向注意力的文档级关系抽取

基于多关系视图轴向注意力的文档级关系抽取

扫码查看
文档级关系抽取旨在从文档中提取多个实体之间的关系.针对现有工作在不同关系类型的条件下,对于实体间的多跳推理能力受限的问题,提出了一种基于多关系视图轴向注意力的文档级关系抽取模型.该模型将依据实体间的关系类型构建多视图的邻接矩阵,并基于该多视图的邻接矩阵进行多跳推理.基于两个文档级关系抽取基准数据集GDA和DocRED分别进行实验,结果表明,所提模型在生物数据集GDA上的F1指标达到85.7%,性能明显优于基线模型;在DocRED数据集上也能够有效捕获实体间的多跳关系.
Document-level Relation Extraction Based on Multi-relation View Axial Attention
Document-level relationship extraction aims to extract relationships between multiple entities from documents.To ad-dress the limited multi-hop reasoning capacity of existing methods for establishing connections between entities with different re-lationship types,this paper propose a document-level relationship extraction model based on multi-relation view axial attention.The model will construct a multi-view adjacency matrix based on the relationship types between entities,and use it to perform multi-hop reasoning.In order to evaluate the proposed model's performance,two benchmark datasets for document-level relation-ship extraction,namely GDA and DocRED are used in this study.The experimental results demonstrate that the F1 metric achieves 85.7%on the biological dataset GDA,significantly surpassing the baseline model's performance.Moreover,the pro-posed model proves effective in capturing the multi-hop relationships among entities in the DocRED dataset.

Relation extractionDocument levelAxial attentionMulti viewMulti-hop inference

吴皓、周刚、卢记仓、刘洪波、陈静

展开 >

战略支援部队信息工程大学数据与目标工程学院 郑州 450001

数学工程与先进计算国家重点实验室 郑州 450001

关系抽取 文档级 轴向注意力 多视图 多跳推理

河南省科技攻关项目

222102210081

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(10)