首页|资源受限场景下的虚假信息识别技术研究

资源受限场景下的虚假信息识别技术研究

扫码查看
近年来,社交媒体因其开放性和便捷性,为虚假信息的扩散和泛滥提供了温床.相较于单模态虚假信息,多模态虚假信息通过融合文本和图片等多种信息形式,创造出更具迷惑性的虚假内容,造成更深远的影响.现有的多模态虚假信息识别方法大多基于小模型,而多模态大模型的快速发展为多模态虚假信息的识别提供了新思路.然而,这些模型通常参数众多、计算资源消耗大,无法直接部署在计算和能量资源受限的场景中.为了解决以上问题,提出一种基于多模态大模型Long-CLIP的多模态虚假信息识别模型.该模型能够处理长文本,关注更多粗粒度和细粒度细节.同时,利用高效多粒度分层剪枝进行模型压缩,得到一个更加轻量化的多模态虚假信息识别模型,以适应资源受限场景.最后,在微博数据集上,通过与微调前后的当前流行的多模态大模型和其他剪枝方法进行对比,验证了该模型的有效性.结果显示,基于Long-CLIP的多模态虚假信息识别模型在模型参数和推理时间方面远少于当前流行的多模态大模型,但检测效果更佳.模型压缩后,在检测效果仅下降0.01的情况下,模型参数减少50%,推理时间减少1.92s.
Study on Fake News Detection Technology in Resource-constrained Environments
In recent years,social media has become a fertile ground for the spread and proliferation of fake news due to its open-ness and convenience.Compared to unimodal fake news,multimodal fake news,which combines various forms of information such as text and images,creates more confusing false content and has a more far-reaching effects.Existing methods for multimodal fake news detection predominantly rely on small models.However,the rapid development of multimodal large models offers new pers-pectives for addressing this issue.These models,though,are typically parameter-intensive and computationally demanding,making them challenging to deploy in environments with limited computational and energy resources.To address these challenges,this study proposes a multimodal fake news detection model based on the multimodal large model Long-CLIP.This model is capable of processing long texts and attending to both coarse-grained and fine-grained details.Additionally,by employing an efficient coarse-to-fine layer-wise pruning method,a more lightweight multimodal fake news detection model is obtained to adapt to resource-con-strained scenarios.Finally,on the Weibo dataset,the proposed model is compared with current popular multimodal large models before and after fine-tuning and other pruning methods,and its effectiveness is verified.Results indicate that the Long-CLIP-based multimodal fake news detection model significantly reduces model parameters and inference time compared to current popu-lar multimodal large models,while maintaining superior detection performance.After compression,the model achieves a 50%re-duction in parameters and a 1.92 s decrease in inference time,with only a 0.01 drop in detection accuracy.

Fake news detectionMultimodal large modelsResource-constrainedModel compressionPruning

武成龙、胡明昊、廖劲智、杨慧、赵翔

展开 >

国防科技大学大数据与决策实验室 长沙 410073

军事科学院信息研究中心 北京 100036

国防大学军事管理学院 北京 100000

中国电子科技集团公司第三十研究所 成都 610041

展开 >

虚假信息识别 多模态大模型 资源受限 模型压缩 剪枝

国家重点研发计划国家自然科学基金国家自然科学基金

2022YFB31026007230128462376284

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(11)