首页|一种基于层次超图注意力神经网络的服务推荐算法

一种基于层次超图注意力神经网络的服务推荐算法

扫码查看
随着Internet和 Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统.目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互,忽略了 mashup和API调用之间的内在关系;为了解决这个问题,提出了一种基于层次超图注意力的服务推荐方法(H-HGSR)来进行API推荐.首先定义了 8种类型的超边,并探究了对应类型超边的超图邻接矩阵生成方法,然后提出了节点级和超边级的注意力机制.节点级注意力机制用于聚合特定类型超图邻接矩阵下的不同邻居的重要信息,以捕获mashup和API之间的高阶关系;超边级注意力机制用于对从不同类型超图邻接矩阵生成的节点嵌入进行加权组合.通过学习节点级和超边级注意力的重要性,可以获得更准确的嵌入表示.最后使用一个多层感知器神经网络(MLP)进行服务推荐.在Programmable Web真实数据集上进行了大量实验,结果表明,所提H-HGSR框架优于目前最先进的服务推荐方法.
Hierarchical Hypergraph-based Attention Neural Network for Service Recommendation
With the rapid growth of various services and APIs on the Internet and the Web,it has become increasingly challenging for developers to quickly and accurately find APIs that meet their needs,thus requiring an efficient recommendation system.Cur-rently,the application of graph neural networks in service recommendation has achieved great success,but many such methods are still limited to simple interactions and ignore the intrinsic relationships between mashups and API calls.To address this issue,this paper proposes a hierarchical hypergraph-based attention neural network for service recommendation method(H-HGSR)for API recommendation.First,eight types of hyperedges are defined,and the corresponding hypergraph adjacency matrix generation methods are explored.Then,node-level and hyperedge-level attention mechanisms are proposed.The node-level attention mecha-nism is used to aggregate important information from different neighbors under specific types of hypergraph adjacency matrices to capture high-order relationships between mashups and APIs.The hyperedge-level attention mechanism is used to weight the com-bination of node embeddings generated from different types of hypergraph adjacency matrices.By learning the importance of node-level and hyperedge-level attention,more accurate embedding representations can be obtained.Finally,a multi-layer perceptron neural network(MLP)is used for service recommendation.Extensive experiments are conducted on the Programmable Web real dataset,and the overall comparison results show that the proposed H-HGSR framework outperforms the state-of-the-art service recommendation methods.

Service recommendationHypergraphsGraph neural networksAttention mechanism

杨东昇、王桂玲、郑鑫

展开 >

北方工业大学信息学院 北京 100144

北方工业大学大规模流数据集成与分析技术北京市重点实验室 北京 100144

服务推荐 超图 图神经网络 注意力机制

国家自然科学基金重点项目国家自然科学基金国际(地区)合作与交流项目

6183200462061136006

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(11)