首页|自动驾驶场景下的图像三维目标检测研究进展

自动驾驶场景下的图像三维目标检测研究进展

扫码查看
二维目标检测技术由于缺乏对物理世界尺寸、深度等信息的描述,在自动驾驶场景中应用还存在较大的局限性.许多研究者结合自动驾驶实际需要,在图像三维目标检测上做了许多探索.为了对该领域进行全面研究,文中对近年来国内外发表的相关文献进行综述,介绍了基于图像的三维目标检测以及图像与点云融合的三维目标检测两类方法,并根据网络对输入数据的不同处理方式,对两类方法进一步细分,阐述了各个类别中的代表性方法,对各类方法的优劣进行总结,对比并分析了各算法的性能.此外,详细介绍了自动驾驶场景下三维目标检测的相关数据集和评价指标.最后,对图像三维目标检测领域中存在的挑战和困难进行了分析,并对未来可能的研究方向进行了展望.
Research Progress of Image 3D Object Detection in Autonomous Driving Scenario
2D object detection techniques have significant limitations when applied to automatic driving scenarios due to the ab-sence of description of the size,depth and other information of the physical environment.Numerous researchers have made exten-sive explorations in the field of image 3D object detection by aligning with the practical requirements of automatic driving.To conduct a comprehensive study in this domain,this paper reviews recent literature published both domestically and international-ly.It introduces two main categories of methods:image-based 3D object detection and 3D object detection by fusing image and point cloud data.Furthermore,it further subdivides these categories based on the different approaches used to process input data by the network.The paper describes representative methods within each category,summarizes the strengths and weaknesses of each method,and conducts a comparative analysis of their performance.Additionally,it provides a detailed introduction to relevant datasets and evaluation metrics for 3D object detection in autonomous driving scenarios.Finally,the paper analyzes the challenges and difficulties in the field of image 3D object detection,and outlines potential future research directions.

Image 3D object detectionDeep learningAutomatic drivingMultimodal fusionComputer vision

周燕、许业文、蒲磊、徐雪妙、刘翔宇、周月霞

展开 >

佛山大学电子信息工程学院 广东佛山 528000

华南理工大学计算机科学与工程学院 广州 510641

图像三维目标检测 深度学习 自动驾驶 多模态融合 计算机视觉

国家自然科学基金广东省自然科学基金广东省自然科学基金广东省普通高校重点研究项目佛山市科技创新项目广东省教育科学规划课题

619720912022A15150101012021A15150126392020ZDZX304920200010032852021GXJK445

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(11)