首页|基于非欧几何权向量产生策略的分解多目标优化算法

基于非欧几何权向量产生策略的分解多目标优化算法

扫码查看
随着目标数量的增加,多目标优化问题(Multi Objective Problems,MOPs)的求解越来越困难.基于分解的多目标进化算法表现出更好的性能,但在求解具有复杂Pareto前沿的MOPs时,此类算法易出现种群多样性不足、算法性能下降等问题.为了解决这些问题,提出了一种基于非欧几何权向量产生策略的分解多目标优化算法,通过在非欧几何空间中拟合非支配前沿并进行参数估计,再利用对非支配解目标变量的正态统计采样生成权向量,以此引导种群的进化方向并保持种群的多样性.同时在非欧几何空间中周期性重新确定子问题的邻域,提高分解算法协同进化的效率,进而提高算法的性能.基于MaF基准测试函数的实验结果表明,相比MOEA/D,NSGA-Ⅲ和AR-MOEA算法,所提算法在求解多目标和众目标优化问题方面具有明显的优势.
Decomposition Multi-objective Optimizaiton Algorithm with Weight Vector Generation Strategy Based on Non-Euclidean Geometry
With the increase of the number of objectives,mult-objective problems(MOPs)are more and more difficult to solve.Decomposition-based multi-objective evolutionary algorithms show better performance.However,when solving MOPs with com-plex Pareto fronts,decomposition-based algorithms show poor diversity in population and the performance deteriorates.To ad-dress these issues,this paper proposes a decomposition multi-objective optimization algorithm with weight vector generation strategy based on non-Euclidean geometry.By fitting the non-dominated frontier in the non-Euclidean geometric space and estima-ting the parameters,the normal statistical sampling of the target variable of the non-dominated solution is used to generate the weight vector,so as to guide the evolution direction of the population and maintain the diversity of the population.Meanwhile,the neighborhood of sub-problems can be rebuilt periodically,to improve the efficiency of the co-evolution of decomposition algorithm and improve the performance of the algorithm.Experiment results based on the MaF benchmark test problems show that,com-pared with MOEA/D,NSGA-Ⅲ and AR-MOEA algorithms,the proposed algorithm has significant performance in solving multi-objective optimization problems.

DecompositionMulti objectiveWeight vectorNon-dominated frontNon-Euclidean geometry

孙良旭、李林林、刘国莉

展开 >

辽宁科技大学计算机与软件工程学院 辽宁鞍山 114051

沈阳工业大学机械工程学院 沈阳 110300

分解 多目标 权向量 非支配前沿 非欧几何

国家自然科学基金国家自然科学基金辽宁省教育厅项目辽宁省振兴人才计划

61903169713010662020LNQN05XLYC2007182

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(11)