首页|联合群稀疏和代表系数双向空间光谱全变分的高光谱图像去噪

联合群稀疏和代表系数双向空间光谱全变分的高光谱图像去噪

扫码查看
高光谱图像去噪是遥感领域的一个基本问题,也是预处理的重要步骤.基于代表系数全变分的去噪方法在高光谱图像(HSI)去噪中有着广泛的应用.代表系数矩阵U继承了干净HSI的先验信息,能够实现全局低秩并降低计算复杂度,但由于一阶全变分的引入,该类方法在去噪过程中产生了很强的阶梯效应并且忽略了不同波段间的共同特征,因此去噪效果很差.针对此问题,提出了一种新的联合群稀疏和代表系数双向空间光谱全变分(RCBGS)的正则化去噪模型.高阶全变分的引入缓解了阶梯效应,并在子空间的差分上引入加权l2,1范数,充分挖掘不同波段除全局低秩外的共同特征,提高了 HSI的内在群稀疏性和整体光滑性.最后,通过交替方向乘子法(ADMM)给出了所提方法的迭代规则,且所提方法的评价指标峰值信噪比相对于对比方法平均提升了 8.79%.在模拟和真实数据集上的实验表明,所提方法在视觉质量和定量评估方面都优于相关方法.
Hyperspectral Image Denoising Combining Group Sparse and Representative Coefficient Bidirectional Spatial Spectral Total Variation
Hyperspectral image denoising is a fundamental problem in remote sensing field,which is an important step of prepro-cessing.Denoising method based on total variation of representative coefficients is widely used in hyperspectral image(HSI)de-noising.Representative coefficient matrix U inherits prior information of clean HSI,which can achieve global low rank and reduce computational complexity.However,due to the introduction of first-order total variational,this method produces a strong step effect in the process of denoising and ignores the common features between different bands,so the denoising effect is poor.To solve this problem,a new regularized denoising model of joint group sparse and representative coefficient bidirectional spatial spectral total variational(RCBGS)is proposed.By introducing high-order total variational,the step effect is alleviated,and the weighted l2,1 norm is introduced into the difference of subspace to fully explore the common features of different bands except global low rank,and improve the intrinsic group sparsity and overall smoothness of HSI.Finally,the iterative rules of the pro-posed method are given by alternate direction multiplier method(ADMM),and the evaluation index peak signal-to-noise ratio of the proposed method is improved by 8.79%on average compared with the comparison methods.Experiments on simulated and real datasets show that the proposed method outperforms relative methods in both visual quality and quantitative evaluation.

Hyperspectral image denoisingBidirectional variationLow-rank priorStaircase effectGroup sparse

司伟纳、叶军、姜斌

展开 >

南京邮电大学理学院 南京 210023

高光谱图像去噪 双向变分 低秩先验 阶梯效应 群稀疏

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(12)