首页|平衡参数自适应下基于模体的混合阶网络多智能体一致性

平衡参数自适应下基于模体的混合阶网络多智能体一致性

扫码查看
充分利用多智能体网络结构中的高阶信息可以有效增强多智能体一致性.现有的基于模体加权的多智能体框架(Motif-aware Weighted Multi-agent System,MWMS)将关注点集中在复杂网络中连接信息的提取,忽略了网络中的碎片信息,导致MWMS在取不同的平衡参数值时收敛效果差异较大.针对上述问题,提出了一种平衡参数自适应下基于模体加权的多智能体系统框架(Alpha-adaptive Motif-aware Weighted Multi-agent System,AMWMS),揭示了多智能体系统在混合阶网络下的平衡参数的调节规律.首先,提出了基于Jaccard相似性的高阶网络碎片化程度量化方法和基于相对距离的低阶网络碎片化程度量化方法,用于对不同网络层碎片信息进行建模;其次,设计了自适应参数生成的混合阶网络(Adaptive Parameter Genera-tion Hybrid-Order Network,APGHNet),APGHNet的平衡参数能够在系统演化过程中自适应变化;最后,给出了平衡参数自适应下基于模体矩阵的多智能体一致性协议.通过仿真实验与MWMS中的一致性协议进行比较,验证了新协议的平衡参数自适应生成方法的有效性,系统最终能够收敛到较少的簇,增强了系统一致性.
Motif Based Hybrid-order Network Consensus for Multi-agent Systems with Trade-off Parameter Adaptation
Making full use of the high-order information in the multi-agent network structure can effectively enforce the multi-agent consensus.The algorithm proposed by motif-aware weighted multi-agent system(MWMS)focuses on the extraction of con-nection information in the complex network,ignoring the fragment information in the network,resulting in a large difference in the convergence effect of MWMS when taking different balance parameter values.To address the aforementioned issues,this pa-per proposes an alpha-adaptive motif-aware weighted multi-agent system(AMWMS)to reveal the regulatory patterns of balance parameters for MASs in hybrid-order networks.Firstly,this paper proposes methods for quantifying the degree of high-order net-work fragmentation based on Jaccard similarity and the degree of low-order network fragmentation based on relative distance,which are used for modeling different layer network fragment information.Secondly,an adaptive parameter generation hybrid-or-der network(APGHNet)is designed,and its balance parameter can adaptively change during system evolution.Finally,this paper proposes a motif-aware weighted multi-agent consensus protocol with trade-off parameter adaptation.Simulation results show that the balance parameter adaptive method of the new protocol is effective by comparing with the consistency protocol in MWMS,and the system can eventually converge to fewer clusters to enforce the system consensus.

Multi agent systemsTrade-off parameter adaptationNetwork fragmentation quantificationTopology optimization

谢光强、吴烨彬、李杨

展开 >

广东工业大学计算机学院 广州 510006

多智能体系统 平衡参数自适应 网络碎片度量 拓扑优化

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(12)