首页|基于图卷积神经网络的点云语义分割综述

基于图卷积神经网络的点云语义分割综述

扫码查看
随着点云在自动驾驶、地图测绘和矿山测量等领域的广泛应用,人们愈发关注这种蕴含丰富信息的数据表示形式.点云语义分割作为点云数据处理的重要手段,因具有极高的研究价值和应用前景而受到广泛关注.由于点云所具有的置换不变性和旋转不变性等特点,传统的卷积神经网络无法直接处理不规则的点云数据,而图卷积神经网络却可以使用图卷积算子直接提取点云特征,逐步成为当前点云分割领域的研究热点.虽已有综述性文章对点云分割方法做出总结,但这些文章对图卷积的介绍较为粗略.因而对近几年基于图卷积的点云分割方法进行了分析和归类,总结每类方法的研究思路和特点;然后,介绍了一些在点云语义分割领域中主流的点云数据集和评价指标,并对提及的分割方法的实验结果进行对比;最后,对各类方法的发展方向进行了展望.
Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks
As point clouds are widely utilized in various fields such as autonomous driving,map making,and mining measure-ment,there is a growing interest in this data representation that contains rich information.Point cloud semantic segmentation,as an important means of point cloud data processing,has attracted wide attention due to its high research value and application prospects.Due to the characteristics of permutation invariance and rotation invariance in point clouds,traditional convolutional neural networks cannot directly process irregular point cloud data,but graph convolutional neural networks can use graph convo-lution operators to directly extract point cloud features.Therefore,this paper provides a detailed review of recent point cloud seg-mentation methods based on graph convolution.The methods are further divided according to the type of graph convolution,and representative algorithms in each category are introduced and analyzed,summarizing the research ideas and advantages and disad-vantages of each method.Then,some mainstream point cloud datasets and evaluation metrics in the field of point cloud semantic segmentation are introduced,and the experimental results of the mentioned segmentation methods are compared.Finally,the de-velopment direction of various methods is discussed.

Semantic segmentationPoint cloudsGraph convolution neural networkDeep learningComputer vision

黄海新、蔡明启、王钰瑶

展开 >

沈阳理工大学自动化与电气工程学院 沈阳 110159

语义分割 点云 图卷积神经网络 深度学习 计算机视觉

国家自然科学基金

61672359

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 31