首页|基于改进飞蛾扑火优化算法的船机桨匹配设计研究

基于改进飞蛾扑火优化算法的船机桨匹配设计研究

扫码查看
基于改进飞蛾扑火优化(Improved Moth-Flame Optimization,IMFO)算法,以两艘现有船舶为计算实例,展开了综合考虑螺旋桨推进效率、空泡性能和桨叶强度的船机桨匹配工作.以遗传算法(Genetic Algorithm,GA)和原始飞蛾扑火优化(Moth-Flame Optimization,MFO)算法为对比算法,分析了IMFO辅助船机桨匹配工作时的性能.数值实验的结果表明,在解决船机桨匹配问题时,IMFO算法的收敛时间相比GA算法在两个算例中分别缩短了44.24%和54.14%,相比MFO算法分别缩短了23.9%和23.12%.此外,在求解精度方面,在计算示例1中,IMFO算法相比GA算法和MFO算法略有提升;而在计算示例2中,IMFO算法相比GA算法提高了3.66%,较MFO算法提高了0.98%.最后,通过对两个算例的可行解空间进行可视化表示,进一步讨论了IMFO算法的求解性能.上述结果对比证明了IMFO算法具备强大的全局搜索能力,在解决船机桨匹配问题时具有良好的竞争力和鲁棒性.
Study on Matching Design of Ship Engine and Propeller Based on Improved Moth-Flame Optimization Algorithm
This paper develops an improved moth-flame optimization(IMFO)algorithm for the ship propeller-matching problem,which comprehensively considers propeller efficiency,cavitation,and strength for two existing ships as calculation examples.Ge-netic algorithm(GA)and the original moth-flame optimization(MFO)algorithm are used as comparison algorithms to analyze the performance of the IMFO-assisted propeller-matching task.Numerical experiment results show that the convergence time of the IMFO algorithm in solving the propeller-matching problem is reduced by 44.24%and 54.14%compared to the GA algorithm in the two examples,and by 23.9%and 23.12%compared to the MFO algorithm,respectively.In addition,in terms of solution ac-curacy,the IMFO algorithm is slightly better than the GA and MFO algorithms in calculation example 1.In calculation example 2,the IMFO algorithm is improved by 3.66%compared to the GA algorithm and by 0.98%compared to the MFO algorithm.Fi-nally,by visualizing the feasible solution space of the two examples,the performance of the IMFO algorithm is further discussed.The above results demonstrate that the IMFO algorithm has strong global search capability and is competitive and robust in sol-ving the propeller-matching problem.

Improved moth-flame optimization algorithmOptimized designSwarm intelligence optimization algorithmMatching of ship engine and propellerMarinepropeller

陈振霖、罗亮、郑龙、姬胜晨、陈顺怀

展开 >

高性能船舶技术教育部重点实验室 武汉430063

武汉理工大学船海与能源动力工程学院 武汉430063

改进飞蛾扑火优化算法 优化设计 群智能优化算法 船机桨匹配 船用螺旋桨

国家自然科学基金

52101368

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 15