首页|基于Electra预训练模型并融合依存关系的中文事件检测模型

基于Electra预训练模型并融合依存关系的中文事件检测模型

扫码查看
事件检测是信息提取领域的一个重要研究方向.现存的事件检测模型受到语言模型训练目标的限制,只能被动地获取词与词之间的依赖关系,使得模型在训练的过程中过多地关注与训练目标不相关的成分,从而导致检测结果错误.以往的研究表明,充分理解上下文信息对于基于深度学习的事件检测技术至关重要.因此,在Electra预训练模型的基础上,引入KVMN网络来捕捉单词之间的依赖关系,以增强单词的语义特征,并采用了一种门控机制来加权这些特征.然后,为了解决中文事件检测中模型识别错误决策的问题,在输入中加入负样本,对不同样本加入不同程度的噪声,使模型学习更好的嵌入表示,有效提高了模型对未知样本的泛化能力.最后,在公共数据集LEVEN上的实验结果表明,该方法优于现有方法,取得了93.43%的F1值.
Electra Based Chinese Event Detection Model with Dependency Syntax Tree
Event detection is an important research direction in the field of information extraction.The existing event detection models are limited by the training targets of language models,and the dependency relationship between words can only be ac-quired passively,so the models pay more attention to the unrelated components during training,resulting in the wrong decetion results.Previous studies show that fully understanding contextual information is crucial for deep learning-based event detection techniques.In this paper,we introduce the KVMN network to capture the dependencies between words and enhance the semantic features of words,and a gating mechanism is adapted to weight these features.Then,in order to solve the problem of the model's identification of wrong decisions,negative samples are added to the input,and different levels of noise are added for different sam-ples,so that the model could learn a better embedding representation,effectively improving the model's ability to generalise un-known samples.Finally,experimental results on the public dataset LEVEN show that this method is superior to the existing methods and achieves a F1 score of 93.43%.

Event detectionDependencyKey-value memory networkGating mechanismNegative sampling

尹宝生、孔维一

展开 >

沈阳航空航天大学人机智能研究中心 沈阳 110136

事件检测 依存关系 键值记忆网络 门控机制 负采样

辽宁省教育厅项目

LJKMZ20220536

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 32