首页|基于双重方向向量的大规模多目标进化算法

基于双重方向向量的大规模多目标进化算法

扫码查看
大规模多目标优化问题的决策空间维度高达数百维,在巨大的搜索空间中实现快速收敛同时高效保持种群多样性极具挑战.针对上述问题,文中提出了一种基于双重方向向量的大规模多目标进化算法(DDLE),该算法的主要思想是利用两类不同的方向向量引导种群进化,提高算法的搜索效率.首先,设计了一种收敛性方向向量生成策略提升算法的收敛速度;其次,推出了一种多样性方向向量生成策略增强种群的多样性;最后,提出了一种基于自适应的环境选择算子动态平衡种群进化过程中的收敛性与多样性.为验证DDLE的性能,将其与5种先进的算法在72个大规模基准测试问题上进行了对比实验.实验结果表明,DDLE在求解大规模多目标优化问题上相较于其它对比算法具有显著优势.
Dual Direction Vectors-based Large-scale Multi-objective Evolutionary Algorithm
The decision space dimension of large-scale multi-objective optimization problems is up to hundreds of dimensions.It is extremely challenging to achieve fast convergence in the huge search space while efficiently maintaining the diversity of the popu-lation.To address the above problems,a dual direction vectors-based large-scale multi-objective evolutionary algorithm(DDLE)is proposed in the paper.The main idea of the algorithm is to utilize two different types of direction vectors to guide the population evolution and improve the search efficiency of the algorithm.First,a convergent direction vector generation strategy is designed to improve the convergence speed of the algorithm.Second,a diversity direction vector generation strategy is introduced to enhance the diversity of the population.Finally,an adaptive environment-based selection operator is proposed to dynamically balance the convergence and diversity in the process of population evolution.To verify the performance of DDLE,it is compared with five state-of-the-art algorithms in experiments on 72 large-scale benchmark test problems.Experimental results show that DDLE has a significant advantage over other compared algorithms in solving large-scale multi-objective optimization problems.

Evolutionary algorithmsLarge-scale multi-objective optimizationDual direction vectorsConvergence direction vec-tordiversity direction vector

韩立君、王鹏、李瑞旭、刘仲尧

展开 >

烟台大学计算机与控制工程学院 山东烟台 264005

进化算法 大规模多目标优化 双重方向向量 收敛性方向向量 多样性方向向量

国家自然科学基金国家自然科学基金国家自然科学基金山东省重大科技创新工程项目山东省自然科学基金山东省自然科学基金山东省自然科学基金

6207239261972360621033502019522Y020131ZR2020QF113ZR2020QF046ZR2021QF086

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 35