首页|深度学习驱动的水下图像处理研究进展

深度学习驱动的水下图像处理研究进展

扫码查看
随着人工智能和水下设备的发展,水下机器人能够便捷地获取水下图像.水下图像对于海洋的探索和开发等活动至关重要,但由于水下成像环境十分复杂,导致获取到的水下图像成像质量较低,具有低对比度、模糊和颜色失真等退化问题,难以满足水下生产活动的要求.近年来,基于深度学习的水下图像处理方法和质量评价指标发展迅速,受到诸多学者的关注.目前已有基于深度学习的水下图像处理方法的综述,但仍存在总结不够全面及缺少最新研究成果等问题.因此,文中首先分析水下图像退化成因并提出所需处理的问题,根据各类算法的原理特点将水下图像处理方法进行分类;其次,详细分析和归纳了基于深度学习的水下图像处理最新研究成果,总结出各类算法的主要特征;然后,详细整理了现有的公开水下图像数据集和当前主流以及最新的基于学习的水下图像质量评测指标,并通过设计实验将传统算法和基于深度学习的水下图像处理方法进行对比分析;最后,分析总结了一些水下图像处理领域尚未解决的问题,并对未来的发展方向进行展望.
Research Progress of Underwater Image Processing Based on Deep Learning
With the development of artificial intelligence and underwater equipments,autonomous underwater vehicles can con-veniently obtain underwater images.Underwater images are essential for exploring and developing the ocean.However,due to the complex underwater imaging environment,the acquired underwater images have low image quality,such as low contrast,blurring,and color distortion,making it difficult to meet the requirements of underwater production activities.In recent years,the develop-ment of deep learning-based underwater image processing methods and quality evaluation metrics has received much attention from scholars.Although there have been some reviews on deep learning-based underwater image processing methods,there are still issues such as incomplete summarization and a lack of the latest research results.Therefore,this paper first analyzes the cau-ses of underwater image degradation and proposes the necessary processing issues,and classifies underwater image processing methods based on the principles and characteristics of various algorithms.Secondly,the latest research results on deep learning-based underwater image processing are analyzed and summarized,and the main features of various algorithms are summarized.Then,existing publicly available underwater image datasets and current mainstream and latest learning-based underwater image quality evaluation metrics are detailed,and traditional algorithms and deep learning-based underwater image processing methods are compared and analyzed through experimental design.Finally,some unresolved issues in the field of underwater image proces-sing are analyzed and summarized,and future development directions are discussed.

Deep learningAutonomous underwater vehicleUnderwater imageImage processingImage quality evaluation

张天驰、刘宇轩

展开 >

重庆交通大学信息科学与工程学院 重庆 400074

深度学习 水下机器人 水下图像 图像处理 图像质量评测

国家自然科学基金

52001039

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 86