首页|基于多尺度特征的地基云图分类检测算法

基于多尺度特征的地基云图分类检测算法

扫码查看
地基云的自动识别方法和技术为气象分析中的云状识别和云量估计任务提供了重要的手段和依据.然而,对这两种任务的研究往往独立,互不相干,导致地基云图的分类与分割技术无法有效地结合使用.特别是当云图中出现多类云状时,现有技术难以按不同云类分别划分区域并进行云量计算.为了解决这一问题,提出用基于深度学习的语义分割方法实现对地基云图的按类分割.首先,构建了地基云图语义分割数据集GBCSS,该数据集包含3 000幅云图,共计11个类别.在此基础上,提出了一种基于U型神经网络的改进方案UNet-PPM作为地基云图语义分割模型.为了增强网络对云的轮廓特征提取能力,引入了金字塔池化模块.该模块提取并聚合了不同尺度的图像特征,提升了网络获取全局信息的能力.最后,将设计的网络在GBCSS上进行了训练以及评估,其在测试集上达到了91.5%的像素准确率.与U-Net相比,UNet-PPM在像素准确率上有5.4%的提升,表明该网络对云的轮廓特征提取的能力更强,以及语义分割应用在地基云图中的可行性.
Classification and Detection Algorithm of Ground-based Cloud Images Based on Multi-scale Features
Clouds constantly contribute significantly to climate change in addition to having a short-term impact on local tempera-tures.To study local cloud details,the ground-based observation is used caused by its ability of cloud image capture in high tem-poral and spatial resolution.The research on automatic identification of ground-based clouds is primarily focused on two areas:cloud classification and cloud detection.Traditionally,both of them are regarded as separate and unrelated tasks.Cloud classifica-tion are independent of the segmentation,and most segmentation techniques focus on binary segmentation.This making it difficult to segment regions by different cloud types when the cloud image contains multiple classes of clouds.To address this problem,this paper proposes a semantic segmentation method based on deep learning for the combination of two tasks.First,it constructs the fround-based cloud image semantic segmentation(GBCSS)dataset,which contains 3000 cloud images with a total of 11 types.All images are resized to a square format of 256×256 pixels.Then,an improved scheme based on U-shaped neural networks is designed as the semantic segmentation model for ground-based cloud images.The pyramid pooling module is combined for extrac-ting and aggregating image features at different scales.This module improves the network's ability to obtain global information.The developed network UNet-PPM achieves 91.5%pixel accuracy on average on the test set after being trained and assessed on GBCSS.Our suggested enhanced method outperforms the U-Net,Deeplabv3+,DANet and BiSeNetv2 in terms of pixel accuracy.Experiment results show that the pyramid pooling module contributes a lot to extract cloud contour features and restrain the overfitting problem.Our work show the feasibility of semantic segmentation application in cloud image automatic observation.

Ground-based cloud imageSemantic segmentationCloud image datasetFully convolutional networkPyramid poo-ling module

孙继飞、贾克斌

展开 >

北京工业大学信息学部 北京 100024

先进信息网络北京实验室 北京 100024

地基云图 语义分割 云图数据集 全卷积网络 金字塔池化模块

北京市自然科学基金

4212001

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 26