首页|基于注意力机制与密集邻域预测的轻量化图像语义分割

基于注意力机制与密集邻域预测的轻量化图像语义分割

扫码查看
DeepLabv3+计算复杂度高,空洞空间金字塔池化模块难以突出重要通道特征,解码器生成的高语义化特征图缺乏足够的细节信息.针对上述问题,提出一种基于注意力机制与密集邻域预测的轻量化图像语义分割模型.该模型把MobileNet V2作为主干网络,减少了模型参数量;利用通道空洞空间金字塔池化提取多尺度信息,并对特征图的各通道加权,强化重要通道特征的学习;采用密集邻域预测融合高级特征与低级特征,细化分割结果.在PASCAL VOC 2012增强数据集上进行实验,结果表明,所提方法的平均交并比和平均像素精确度均高于其他7种主流对比算法.与DeepLabv3+相比,参数量与计算量分别减少184.82×106和90.83GFLOPs,该算法在提升分割精度的同时减少了计算开销.
Lightweight Image Semantic Segmentation Based on Attention Mechanism and Densely Adjacent Prediction
A novel algorithm named as lightweight image semantic segmentation based on attention mechanism and densely adja-cent prediction is proposed to avoid the disadvantages of the difficulty in highlighting important channel features for atrous spatial pyramid pooling module,higher computational complexity and lacking of sufficient detailed information for the high level semantic feature map generated by the decoder in DeepLabv3+algorithm.The lightweight MobileNetV2 is regarded as the backbone net-work to reduce model parameters.After the multi-scale information is extracted by the channel atrous spatial pyramid pooling,each channel of the feature map is weighted to reinforce the learning of important channel features.Moreover,the segmentation results are refined since densely adjacent prediction is utilized to combine high-level and low-level features.Experiments are per-formed on the PASCAL VOC 2012 augmented dataset,and the experimental results show that both mean Intersection over union and mean pixel accuracy of the proposed method are higher than the state-of-the-art algorithms.Compared with DeepLabv3+,the parameters and calculation amount are decreased by 184.82 ×106 and 90.83GFLOPs respectively.The proposed algorithm not only improves the segmentation accuracy,but also reduces the computation cost compared to the baseline algorithm.

Deep learningSemantic segmentationDeepLabv3+Attention mechanism

王国刚、董志豪

展开 >

山西大学物理电子工程学院 太原 030006

深度学习 语义分割 DeepLabv3+ 注意力机制

国家自然科学基金山西省自然科学基金山西省自然科学基金

11804209201901D111031201901D211173

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 27