首页|基于快速傅里叶卷积与特征修剪坐标注意力的壁画修复

基于快速傅里叶卷积与特征修剪坐标注意力的壁画修复

扫码查看
针对现存古代壁画长时间自然风化引起的不同程度的裂缝、脱落等病害,人工修复成本过高,而目前已有的壁画修复方法大多都存在框架复杂、耗费算力大,并且修复色彩不够准确和质量不够高等问题,提出了一种以快速傅里叶卷积和坐标注意力为框架的生成对抗网络用于修复工作.该方法将待修复壁画图像和掩码输入该网络,经编码器后传入用于特征推理的残差模块以推理出待修复区域的合理内容;训练过程中由特定的用于修复任务的鉴别器进行对抗训练,最终达到修复效果.所提模型中的特征推理部分为一个包含门控残差连接、6个快速傅里叶卷积模块和改进的特征修剪坐标注意力模块的残差块,具有较大的感受野和提取丰富特征的能力,可解决当前方法所存在的修复结果不佳的问题.在自制数据集下进行实验,与现有几种经典的修复方法进行对比的结果表明,所提算法不仅结构简单,还有着更优秀的修复能力,可应用于古代壁画修复工作,可节省大量的人工成本.
Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention
A proposed solution to the problem of high manual inpainting costs for ancient murals that have undergone varying de-grees of natural weathering resulting in cracks,peeling,and other damage is to use a generative adversarial network with a frame-work based on fast Fourier convolution and coordinate attention.Most existing methods for mural inpainting have complex frame-works that consume a lot of computing power,and produce results that are inaccurate and of low quality.The proposed method takes the damaged mural image and mask as inputs to the network.They are then passed through an encoder and a residual mod-ule for feature inference to determine the reasonable content of the damaged area.During training,a specific discriminator that is used for inpainting tasks conducts adversarial training.Eventually,the desired inpainting effect is achieved.The feature inference portion of the proposed model consists of a residual block containing gate-controlled residual connections,six fast Fourier convo-lution modules,and an improved coordinate attention module for feature pruning.It has a large receptive field and the ability to extract rich features,which can solve the problem of poor inpainting results associated with current methods.Experimental re-sults on a self-made dataset show that the proposed algorithm not only has a simpler structure but also outperforms several clas-sic inpainting methods.Therefore,it can be applied to the inpainting of ancient murals and can save a significant amount of manual labor costs.

Mural inpaintingAttention mechanismResidual networkGenerative adversarial networkDeep learning

张乐、余映、革浩

展开 >

云南大学信息学院 昆明 650500

古代壁画修复 注意力机制 残差网络 生成对抗网络 深度学习

国家自然科学基金国家自然科学基金云南省应用基础研究计划

62166048612630482018FB102

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 28