首页|基于集成学习的MRI脑肿瘤智能诊断

基于集成学习的MRI脑肿瘤智能诊断

扫码查看
脑肿瘤是由于颅脑内部组织出现癌变而导致的高危害疾病,及时诊断脑肿瘤对其治疗及预后至关重要.现阶段不同的网络模型有不同的分类效果,单一的网络模型很难在多个评价指标上有突出的表现.文中基于集成学习提出了一种分类功能强大的 Treer-Net 模型,它是以 TransFG,ResNet50,EfficientNet B4,EfficientNet B7 和 ResNeXt101 为基础模型,通过集成学习的加权平均的结合策略得到的模型.文中将其在脑肿瘤MRI二分类、三分类和四分类的公开数据集上训练完成分类任务.实验数据和结果表明,Treer-Net模型在脑肿瘤三分类数据集上的准确率、精确率、召回率和AUC分别高达99.15%,99.16%,99.15%和99.87%,通过对比分析,充分验证了所提的集成学习方法具有精准、快捷的优越性,更适用于临床辅助诊断脑肿瘤.
Intelligent Diagnosis of Brain Tumor with MRI Based on Ensemble Learning
Brain tumors are high-risk diseases caused by cancerous changes in the internal tissues of the brain,and timely diagno-sis of brain tumors is crucial for their treatment and prognosis.At present,different network models have different classification effects,and a single network model is difficult to achieve outstanding performance on multiple evaluation indicators.This paper proposes a Treer-Net model with powerful classification function based on ensemble learning,which is based on TransFG,Res-Net50,EfficientNet B4,EfficientNet B7 and ResNeXt101,and is obtained through the weighted average combination strategy of ensemble learning.This paper trains it to complete the classification tasks on the publicly available datasets of brain tumor MRI binary,tertiary and quaternary classifications.Experimental data and results show that the accuracy,precision recall and AUC of the Treer-Net model in the three classification datasets of brain tumors are up to 99.15%,99.16%,99.15%and 99.87%respec-tively.Through comparative analysis,it fully verifies that the ensemble learning method in this paper has the advantages of accu-racy and speed,and is more suitable for clinical auxiliary diagnosis of brain tumors.

Brain tumorEnsemble learningImage classificationMagnetic resonance imaging

李鑫蕊、张艳芳、康晓东、李博、韩俊玲

展开 >

天津医科大学医学影像学院 天津 300202

重庆大学附属黔江医院 重庆 409000

天津市第三中心医院 天津 300170

天津市第一中心医院 天津 300192

展开 >

肿瘤 集成学习 图像分类 核磁影像

京津冀协同创新项目

17YEXTZC00020

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 31