首页|基于DIoU损失与平滑约束的结构化SVM目标跟踪方法

基于DIoU损失与平滑约束的结构化SVM目标跟踪方法

扫码查看
基于结构化SVM的目标跟踪因其优良的性能而受到了广泛的关注,但是现有方法存在损失函数不精确和模型漂移问题.针对这两个问题,首先提出基于DIoU损失与平滑约束的结构化SVM模型.该模型采用DIoU函数作为损失函数,利用t时刻超平面法向量wt与t-1时刻超平面法向量wt-1差值的L2范数作为平滑约束.其次基于对偶坐标下降原理设计了该模型的求解算法.最后利用提出的基于DIoU损失与平滑约束的结构化SVM实现了一种多尺度目标跟踪方法.对所提出的目标跟踪方法在OTB100和VOT-ST2021数据集上进行了实验验证,实验结果表明:所提出的Scale-DCSSVM在OTB数据集上的跟踪成功率比DeepSRDCF高1.1个百分点,在VOT-ST2021上的EAO比E.T.Track高1.2个百分点.所提方法具有较优的性能.
Object Tracking of Structured SVM Based on DIoU Loss and Smoothness Constraints
Object tracking based on structured support vector machine has been widely concerned because of its excellent per-formance.However,the existing methods have the problems of imprecise loss function and model drift.To solve these two pro-blems,firstly,a structured SVM model is proposed based on DIoU loss and smoothness constraints.Secondly,DIoU function and L2 norm of the difference between wt and wt-1 are used respectively as the loss functions and the smoothness constraints in the model.Thirdly,the algorithm for the proposed model is designed with the dual coordinate descent principle.Finally,a multi-scale object tracking method is implemented via the proposed structured SVM on the basis of DIoU loss and smoothness constraints.The proposed object tracking method is experimentally validated on the OTB100 and VOT-ST2021 datasets,and the experimental results show that the tracking success rate of the Scale-DCSSVM on the OTB100 is 1.1%higher than the DeepSRDCF,and the EAO on VOT-ST2021 is 1.2%higher than the E.T.Track.The proposed object tracking method has superior performance.

Object trackingStructured SVMDIoU lossSmoothness constraints

孙子文、袁广林、李从利、秦晓燕、朱虹

展开 >

中国人民解放军陆军炮兵防空兵学院兵器工程系 合肥 230031

中国人民解放军陆军炮兵防空兵学院信息工程系 合肥 230031

目标跟踪 结构化SVM DIoU损失 平滑约束

安徽省自然科学基金

2008085QF325

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 40