首页|结合多尺度卷积块与密集卷积块的遥感图像融合

结合多尺度卷积块与密集卷积块的遥感图像融合

扫码查看
遥感图像融合的目的在于获得与多光谱图像相同光谱分辨率和与全色图像相同空间分辨率的高分辨率多光谱图像.尽管深度学习在遥感图像融合方面取得了显著的成果,但由于深度模型网络的限制,网络无法充分提取图像中丰富的空间信息,导致融合图像空间信息缺失,融合结果质量低.因此引入了多尺度块,不同尺度的图像特征可以通过不同大小的卷积核学习,从而增加提取特征的丰富性.随后引入了密集卷积块,通过密集连接来达到特征重用的目的,在网络较深时减少了浅层特征信息的丢失.在特征融合阶段,所提方法将网络不同层次的特征图作为特征融合层的输入,提高融合图像的质量.在GE1数据集以及QB数据集上与6种融合算法进行对比实验,实验结果表明所提方法的融合图像更好地保留了空间信息与光谱信息,在主观和客观评价上均优于对比方法.
Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks
The aim of remote sensing image fusion is to obtain high-resolution multispectral images with the same spectral resolu-tion as multispectral images and the same spatial resolution as panchromatic images.Although deep learning has achieved remark-able results in remote sensing image fusion,the network cannot fully extract the rich spatial information in the image due to the limitation of the deep model network,which leads to the lack of spatial information in the fused image and low quality of the fu-sion result.Therefore,this paper introduces multi-scale blocks,where image features at different scales can be learned by convolu-tional kernels of different sizes,thus increasing the richness of the extracted features.Dense convolutional blocks are then intro-duced to achieve feature reuse through dense connections,reducing the loss of shallow feature information when the network is deep.In the feature fusion stage,the proposed method uses feature maps from different levels of the network as input to the fea-ture fusion layer to improve the quality of the fused images.Comparison experiments are performed with six fusion algorithms on GE1 and QB datasets,and the experimental results show that the fused images of the proposed method retain spatial and spectral information better,and outperform the comparison methods in both subjective and objective evaluations.

Remote sensing image fusionDeep learningMultispectral imagesMultiscale convolution blockDense connection

侯林昊、刘帆

展开 >

太原理工大学大数据学院 山西晋中 030600

遥感图像融合 深度学习 多光谱图像 多尺度卷积块 密集连接

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 19