首页|多重注意力引导的超声乳腺癌肿瘤图像分割

多重注意力引导的超声乳腺癌肿瘤图像分割

扫码查看
传统基于U-Net超声乳腺图像分割任务中存在预测尺度单一和信息丢失等问题.针对存在的问题,提出一种由多重注意力引导机制的U-Net超声乳腺肿瘤图像分割.首先,在U-Net的编码结构中,引入多个SE通道注意力,对输入的乳腺肿瘤图像进行多层级的语义信息提取,引导编码器聚焦乳腺肿瘤特征,减少冗余背景信息带来的干扰;其次,通过设计特征融合处理模块,对编码器传来的特征图进行复杂语义特征的融合处理;最后,在解码器部分,加入金字塔结构捕获全局空间信息,提高模型对肿瘤图像的多尺度特征提取能力,以提高整体网络的表达能力和分割性能.在乳腺肿瘤图像数据集上对该方法进行了仿真实验,结果表明,与其他U-Net改进策略相比,该方法具有更强的准确率和鲁棒性.
Multiple Attention-guided Mechanisms for Ultrasound Breast Cancer Tumor Image Segmentation
There are some problems such as single prediction scale and information loss in traditional U-Net ultrasound breast image segmentation tasks.To solve these problems,a multi-attention-guided U-Net ultrasound image segmentation method for breast tumors is proposed.Firstly,multiple SE attention module are introduced into the encoding structure of U-Net to extract multi-level semantic information from the input breast tumor images,which guides the encoder to focus on the features of breast tumor and reduces the interference caused by redundant background information.Secondly,by designing a feature fusion process-ing module,the complex semantic feature fusion processing is carried out on the feature graph from the encoder.Finally,in the de-coder part,the pyramid structure is added to capture global spatial information to improve the multi-scale feature extraction abili-ty of the model for tumor images,so as to improve the expression ability and segmentation performance of the whole network.The proposed method is simulated on breast tumor image data set,and the results show that compared with other U-Net im-proved strategies,the proposed method has better accuracy and robustness.

Multiple attention guidanceMammary glandU-NetUltrasoundImage segmentation

郭洪洋、程前、康晓东、杨靖怡、杨舒琪、李芳、张蕊

展开 >

天津医科大学医学影像学院 天津 300202

重庆大学附属黔江医院 重庆 409000

北京市化工职业病防治院 北京 100093

多重注意力引导 乳腺 U-Net 超声 图像分割

京津冀协同创新项目

17YEXTZC00020

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 21