首页|基于改进FCOS的遥感图像舰船目标检测

基于改进FCOS的遥感图像舰船目标检测

扫码查看
由于遥感图像中舰船目标方向任意,基于深度学习的通用目标检测算法采用水平框,在检测舰船时易框选大量背景,检测效果欠佳.文中提出一种改进全卷积一阶段目标检测网络(FCOS)的遥感图像舰船目标检测算法,以FCOS为基线,在检测头部分增加一条偏移回归分支,通过偏移水平框的上边中点和右边中点,产生旋转框.舰船目标通常具有较大的长宽比,预测框与真实框之间的角度偏差对交并比的影响较大,进而影响模型的检测精度.针对该问题,在计算偏移损失时引入与舰船目标长宽比有关的加权因子,使得具有较大长宽比的目标获得较大的偏移损失.在HRSC2016数据集上的实验结果表明,所提算法的平均精确度达到89.00%,检测速度达到19.8FPS,相比同类型的无锚框算法,其在检测速度和检测精度上均表现优秀.
Ships Detection in Remote Sensing Images Based on Improved FCOS
Ships in remote sensing images are arranged in arbitrary directions.The general target detection algorithm based on deep learning use horizontal bounding box to locate object,which will select a large number of backgrounds when detecting ships.The ships detection performance based on general object detection method is not good.An improved ships detection algorithm based on fully convolutional one-stage(FCOS)object detection network is proposed.Taking FCOS as the baseline,an offset re-gression branch is added to detection head,and a rotating bounding box is generated by shifting the upper midpoint and the right midpoint of the horizontal bounding box.The ships usually have high aspect ratio,and the angle deviation between the predicted bounding box and the real bounding box has a great influence on the intersection over union(IoU),which damages the detection accuracy of the model.In order to solve this problem,a weighting factor related to the aspect ratio of ships is introduced to calcu-late the offset loss,so that the target with a large aspect ratio can obtain relatively large offset loss.The proposed method and several mainstream rotating target detection algorithms are tested on HRSC2016 dataset.The results show that the average accu-racy of the proposed method is 89.00%and the detection speed is 19.8FPS.Compared with the same type of algorithms without anchor,the proposed method has superior detection speed and accuracy.

Remote sensing imageShips detectionFCOSAnchor-free algorithmOffset branch

陈天鹏、胡建文

展开 >

长沙理工大学电气与信息工程学院 长沙 410114

遥感图像 舰船目标检测 FCOS 无锚框算法 偏移分支

国家自然科学基金面上项目湖南省自然科学基金湖南省教育厅科研项目长沙市自然科学基金

622710872021JJ4060921B0330kq2208403

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 31