首页|一种单阶段无监督可见光-红外跨模态行人重识别方法

一种单阶段无监督可见光-红外跨模态行人重识别方法

扫码查看
无监督"可见光-红外"跨模态行人重识别任务能够缓解智能监控场景中需要大量人工标注的问题.常见多阶段模型用于处理不同模态数据.文中提出了一种有效的单阶段无监督跨模态行人重识别的方法,设计了基于置信因子的聚类算法和图嵌入的跨模态特征处理方法,分别用于解决无标签问题和跨模态问题.实验结果表明,相较于现有算法,所提方法在r=1时精度至少取得了7%的提高.
Single Stage Unsupervised Visible-infrared Person Re-identification
The unsupervised visible-infrared multi-modal person re-identification can alleviate the problem that a lot of manual la-beling is required in the intelligent monitoring scene.Common multi-stage models are used to process different modal data sepa-rately.This paper proposes an effective single-stage unsupervised cross-modal pedestrian recognition method,and designs a clus-tering algorithm based on confidence factor and a cross-modal feature processing method based on graph embedding to solve the unlabeled problem and cross-modal problem respectively.Experimental results show that compared with the existing algorithms,the proposed algorithm has achieved an improvement of at least 7%in the case of r=1.

Cross-modal learningUnsupervised person re-identificationVisible-infrared person re-identificationUnsupervised learningCross-modal feature processing

娄刃、和任强、赵三元、郝昕、周跃琪、汪心渊、李方芳

展开 >

浙江省交通运输科学研究院 杭州 310000

北京理工大学计算机学院 北京 100081

北京理工大学长三角研究院(嘉兴) 浙江嘉兴 314011

浙江交投高速公路运营管理有限公司企业研究院 杭州 310000

展开 >

跨模态学习 无监督行人重识别 可见光-红外行人重识别 无监督学习 跨模态特征处理

浙江省交通厅科技项目浙江省科技厅公益性项目

202209LGC22E080003

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 25