首页|一种改进YOLOv5的CT图像肺结节检测方法

一种改进YOLOv5的CT图像肺结节检测方法

扫码查看
针对YOLOv5算法对CT图像中的肺结节检测效果较差的问题,提出基于改进YOLOv5的肺结节检测方法.将YOLOv5网络中Neck部分的特征金字塔改进为加权双向特征金字塔网络;在YOLOv5网络中的Backbone部分加入高效通道注意力机制与坐标注意力机制.在LIDC-IDRI数据集上进行实验,结果表明,检测的平均精度可达80.2%,召回率可达90.75%,因此该方法能够有效检测肺结节.相较于YOLOv5算法,改进后的算法在mAP上提高了7.7%,在召回率上提高了5.5%.
Method for Lung Nodule Detection on CT Images Using Improved YOLOv5
To address the problem of poor detection results of lung nodules in CT images by YOLOv5 algorithm,an improved YOLOv5-based lung nodule detection method is proposed.The feature pyramid of the Neck part of the YOLOv5 network is im-proved to weighted bidirectional feature pyramid network.In the YOLOv5 network,the Backbone part adds an efficient channel attention mechanism and a coordinate attention mechanism.Experiments are conducted on the LIDC-IDRI dataset and the results show that the average detection accuracy id up to 80.2%,and the recall is up to 90.75%,so this method can effectively detect lung nodules.Compared with the YOLOv5 algorithm,the improved algorithm improves 7.7%in mAP and 5.5%in recall.

Pulmonary nodules detectionDeep learningFeature pyramidAttention mechanism

邬春明、刘亚丽

展开 >

东北电力大学电气工程学院 吉林吉林 132000

肺结节检测 深度学习 特征金字塔 注意力机制

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 22