首页|基于改进Deeplabv3+算法的滚珠丝杠驱动表面点蚀缺陷检测

基于改进Deeplabv3+算法的滚珠丝杠驱动表面点蚀缺陷检测

扫码查看
针对滚珠丝杠驱动表面背景环境复杂、点蚀缺陷目标小因而难以检测的问题,提出改进的Deeplabv3+滚珠丝杠驱动表面缺陷分割算法.本算法采用Re2Net-50替换Deeplabv3+的主干网络,显著提升了对小尺寸缺陷目标的识别能力.此外,通过在主干网络中融合特征金字塔网络FPN,能够加强多尺度信息的提取,从而增强了对缺陷目标的精确定位.最后,本研究在Deeplabv3+网络的ASPP模块之后引入了Coordinate Attention机制,能够增强模型对图像中空间和维度的关注,有效地捕获了图像中的长距离空间依赖关系.实验结果表明,与原始的Deeplabv3+相比,所提算法在平均交并比MIoU指标上提高了4.38%,准确率Accuracy提高了5.52%,F1-score提高了2.74%.同时,与其他经典的语义分割算法相比,所提算法也展现出了一定的优越性.
Detection of Pitting Defects on the Surface of Ball Screw Drive Based on Improved Deeplabv3+Algorithm
Aiming at the problems of complex background environments,small pitting defect targets,and difficulty in detection on the surface of ball screw drives,an improved Deeplabv3+algorithm for segmenting surface defects of ball screw drives is pro-posed.This algorithm adopts Re2Net-50 to replace the backbone network of Deeplabv3+,significantly enhances the ability to recognize small-sized defect targets.Additionally,by integrating feature pyramid networks(FPN)into the backbone network,the algorithm effectively extracts multi-scale information,thereby improving the precise localization of defect targets.Finally,the coordinate attention mechanism is introduced after the ASPP module of the Deeplabv3+network,enhancing the model's focus on spatial dimensions within the image and effectively capturing long-range spatial dependencies.Experimental results demon-strate that,compared to the original Deeplabv3+,the proposed algorithm shows a 4.38%improvement in the mean intersection over union(MIoU)metric,a 5.52%increase in accuracy,and a 2.74%rise in F1-score.Furthermore,when compared with other classic semantic segmentation algorithms,the proposedalgorithm also exhibits certain superiority.

Ball screw driveDefect detectionDeeplabv3+Multi-scale featuresAttention mechanism

郎朗、陈晓琴、刘莎、周强

展开 >

重庆三峡职业学院智能制造学院 重庆 404155

电子科技大学无线通信国家重点实验室 成都 611731

重庆邮电大学计算机科学与技术学院 重庆 400065

滚珠丝杠驱动 缺陷检测 Deeplabv3+ 多尺度特征 注意力机制

重庆市教委科学技术研究计划重庆市教学改革研究项目重庆市教学改革研究项目

KJQN202103509GZ223108GZ223113

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 16