首页|融合三维人脸动态信息和光流信息的人脸表情识别

融合三维人脸动态信息和光流信息的人脸表情识别

扫码查看
人脸表情识别在静态图像上取得了卓越的成效,但这些方法应用于视频或图像序列时,准确度和鲁棒性往往会受到影响.传统的方法通常无法基于空间信息和光流信息进行人脸表情的识别,然而这些辅助识别信息都是二维信息,没有考虑到人脸的表情变化是一种三维的变化过程.为充分挖掘人脸表情识别的深层语义信息,提出了一种基于三维人脸动态信息和光流信息相结合的融合表情识别方法.该方法构建基于人脸深度图像、光流图像和RGB图像的多流卷积神经网络,通过融合3种模态的信息进行人脸表情识别.所提方法在CAER,RAVDESS数据集上进行了充分验证,实验结果表明,其在表情识别性能上优于目前的主流方法,证明了其有效性.
Facial Expression Recognition Integrating 3D Facial Dynamic Information and Optical Flow Information
Facial expression recognition has achieved excellent results in static images,but when these methods are applied to vi-deos or image sequences,their accuracy and robustness are often affected.Traditional methods cannot usually recognize facial ex-pressions based on spatial information and optical flow information.However,these auxiliary recognition information are all two-dimensional information,without considering that facial expression changes are a three-dimensional change process.In order to fully mine the deep semantic information of facial expression recognition,this paper proposes a fusion expression recognition method based on the combination of 3D facial dynamic information and optical flow information.This method constructs a multi stream convolutional neural network based on facial depth images,optical flow images,and RGB images,and integrates informa-tion from three modalities for facial expression recognition.The proposed method has been fully validated on CAER and RAVDESS datasets,and experimental results show that it outperforms current mainstream methods in facial expression recogni-tion performance,which proves its effectiveness.

Facial expression recognitionMulti-stream convolutional neural network3D facial dynamic informationOptical flow information

张华忠、潘曰凯、涂晓光、刘建华、许罗鹏、周超

展开 >

中国民用航空飞行学院航空电子电气学院 四川广汉 618300

表情识别 多流卷积神经网络 三维人脸动态信息 光流信息

中国博士后科学基金中央高校基本科研业务费专项中央高校基本科研业务费专项民航飞行技术与飞行安全重点实验室开放基金民航飞行技术与飞行安全重点实验室自主项目

2022M722248J2023-026ZHMH2022-004FZ2022KF06FZ2021ZZ03

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 24