首页|WiCare:一种非接触式的老人如厕跌倒监测模型

WiCare:一种非接触式的老人如厕跌倒监测模型

扫码查看
老人在卫生间内的跌倒行为存在因救助及时性差而导致严重危害的风险,因此高效快捷的如厕跌倒监测研究具有重要意义.针对当前基于Wi-Fi感知的跌倒监测方法中存在的受噪声影响大而特征提取不充分、监测精度有限的问题,提出了一种基于多级离散小波变换和软阈值处理的信号降噪算法,及一种融合卷积神经网络、双向长短期记忆网络及自注意力机制的非接触式如厕跌倒监测模型WiCare.首先,从原始CSI数据中提取振幅作为基础数据;其次,使用多级离散小波变换和软阈值处理进行感知数据降噪;然后,将感知数据进行多维重构,以更准确地表征跌倒行为特征;最后,利用WiCare提取感知数据中的有效特征,进而实现卫生间如厕跌倒行为监测功能.实验结果表明,WiCare在居家卫生间环境下对跌倒行为监测的准确率为99.41%,与其他同类模型相比,WiCare的识别准确率高,模型复杂度低,且泛化能力更强.
WiCare:Non-contact Fall Monitoring Model for Elderly in Toilet
The fall down behavior of elderly people in the bathroom poses a risk of serious harm due to poor timely rescue.There-fore,efficient and rapid monitoring of fall down in toilet is of great significance.A non-contact fall down in toiletmonitoring model WiCare,which integrates convolutional neural network(CNN),Bi-directional long short-term memory(BiLSTM),and self-atten-tion mechanism,is proposed to address the issues of insufficient feature extraction and limited monitoring accuracy in current fall monitoring methods based on Wi-Fi perception,which are greatly affected by noise.Firstly,the amplitude is extracted from the original CSI data as the basic data.Secondly,multi-level discrete wavelet transform and soft threshold processing are used to re-duce perceived data noise.Then,the perceptual data is reconstructed in multiple dimensions to more accurately characterize the characteristics of fall behavior.Finally,WiCare is used to extract effective features in the perception data,and then realize the function of monitoring toilet fall behavior in the toilet.Experimental results show that the accuracy of WiCare in monitoring fall behavior in the home bathroom environment is 99.41%.Compared with other similar models,WiCare has high recognition accu-racy,low model complexity,and stronger generalization ability.

Wi-Fi sensingFall down in toilet detectionMultilevel discrete wavelet transformSoft threshold processingDeep learning

段鹏松、刁宪广、张大龙、曹仰杰、刘广怡、孔金生

展开 >

郑州大学网络空间安全学院 郑州 450002

解放军战略支援部队信息大学 郑州 450001

Wi-Fi感知 如厕跌倒监测 离散小波变换 软阈值处理 深度学习

郑州市协同创新重大专项中国工程科技发展战略河南研究院战略咨询研究项目河南省科技攻关计划

20XTZX060132022HENYB03232102210050

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 35