首页|通过拉普拉斯平滑梯度提高对抗样本的可迁移性

通过拉普拉斯平滑梯度提高对抗样本的可迁移性

扫码查看
深度神经网络因模型自身结构的脆弱性,容易受对抗样本的攻击.现有的对抗样本生成方法具有较高的白盒攻击率,但在攻击其他DNN模型时可转移性有限.为了提升黑盒迁移攻击成功率,提出了一种利用拉普拉斯平滑梯度的可迁移对抗攻击方法.该方法在基于梯度的黑盒迁移攻击方法上做了改进,先利用拉普拉斯平滑对输入图片的梯度进行平滑,将平滑后的梯度输入利用梯度攻击的攻击方法中继续用于计算,旨在提高对抗样本在不同模型之间的迁移能力.拉普拉斯平滑的优点在于它可以有效地降低噪声和异常值对数据的影响,从而提高数据的可靠性和稳定性.通过在多个模型上进行评估,该方法进一步提高了对抗样本的迁移成功率,最佳的可迁移成功率比基线攻击方法高出2%.结果表明,该方法对于增强对抗攻击算法的迁移性能具有重要意义,为进一步研究和应用提供了新的思路.
Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient
Deep neural networks are vulnerable to adversarial sample attacks due to the fragility of the model structure.Existing adversarial sample generation methods have a high white box attack rate,but their transferability is limited when attacking other DNN models.In order to improve the success rate of black box migration attack,this paper proposes a migration counterattack method using Laplacian smooth gradient.This method is improved on the gradient-based black box migration attack method.Firstly,Laplacian smoothing is used to smooth the gradient of the input image,and the smoothed gradient is input into the attack method using gradient attack for further calculation,aiming to improve the migration ability of the adversary-sample between dif-ferent models.The advantage of Laplacian smoothing is that it can effectively reduce the impact of noise and outliers on the data,thus improving the reliability and stability of the data.The approach does further improve the migration success of adversarial samples by evaluating them on multiple models,with the best migrable success rate 2%,higher than the baseline attack method.The results show that this method is of great significance to enhance the migration performance of adversarial attack algorithms,and provides a new idea for further research and application.

Deep neural networksAdversarial attackAdversarial samplesBlack-box attackTransferability

李文婷、肖蓉、杨肖

展开 >

湖北大学计算机与信息工程学院 武汉 430000

深度神经网络 对抗攻击 对抗样本 黑盒攻击 可迁移性

&&&&

2022KZ00125E1KF291005

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 24