首页|基于联邦学习的智能电网AMI入侵检测方法研究

基于联邦学习的智能电网AMI入侵检测方法研究

扫码查看
高级量测体系(Advanced Metering Infrastructure,AMI)是建设智能电网及泛在电力物联网的关键一环.随着海量终端接入和异构通信网络组件的应用,AMI遭受网络攻击的风险大大增加.针对传统AMI网络攻击入侵检测方法存在主站计算压力过大、抗灾能力弱以及识别精度不足的问题,提出一种基于联邦学习的AMI入侵检测方法.首先,构建面向AMI的联邦学习入侵检测模型,在模型中集成联邦学习框架;然后,设计一种边缘侧的融合决策树的轻量级入侵检测算法,并提出跨台区云边协同的联合训练方法,实现跨台区经验的共享,提升入侵检测性能;最后,基于NSL-KDD数据集进行仿真验证,结果表明,与集中式、联邦学习与神经网络的入侵检测模型相比,所提方法准确率可达99.76%,误报率仅为0.17%.同时减少了检测时间,提高了通信效率,并且保证数据不离开本地,降低了数据隐私泄露的风险.
Study on Smart Grid AMI Intrusion Detection Method Based on Federated Learning
Advanced metering infrastructure(AMI)is a key link in building smart grid and ubiquitous electric IoT.With the ap-plication of mass terminal access and heterogeneous communication network components,the risk of network attacks on AMI is greatly increased.For the problems of traditional AMI network attack intrusion detection methods,such as excessive computing pressure of the main station,weak disaster resistance ability and insufficient recognition accuracy,an AMI intrusion detection method based on federated learning is proposed.Firstly,the federated learning intrusion detection model for AMI is constructed,and the federated learning framework is integrated into the model.Then,a lightweight intrusion detection algorithm that in-tegrates decision tree on the edge side is designed,and a cross-platform cloud-edge collaborative joint training method is proposed to realize cross-platform experience sharing and improve intrusion detection performance.Finally,based on the NSL-KDD data-set,simulation results show that compared with the centralized and federated learning fusion neural network intrusion detection models,the accuracy of the proposed method can reach 99.76%,and the false positive rate is only 0.17%.At the same time,the detection time is reduced,the communication efficiency is improved.It also ensures that data does not leave the local area,reduc-ing the risk of data privacy disclosure.

AMIFederated learningIntrusion detectionCloud edge collaborationDecision tree

刘东奇、张琼、梁皓澜、张孜栋、曾祥君

展开 >

长沙理工大学电气与信息工程学院 长沙 410114

湖南工程学院电气与信息工程学院 湖南湘潭 411104

AMI 联邦学习 入侵检测 云边协同 决策树

国家自然科学基金国家重点研发计划湖南省教育厅科研项目长沙理工大学科研创新项目

521770682018YFB090490021C0577CXCLY2022076

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 23