首页|融合媒体信息和信号分解的股票市场深度学习预测

融合媒体信息和信号分解的股票市场深度学习预测

扫码查看
对股票市场未来回报和风险的精确预测不仅能够帮助理性投资者更加合理有效地进行投资,也能够为政策制定者和投资者提供有用的指导.利用金融新闻标题文本,通过词嵌入模型和机器学习等文本分析方法,构建考虑新闻累积效应的投资者时闻累积情绪指数表征投资者情绪;以上证指数为例,采用变分模式分解(VMD)方法将指数波动数据分解为各种内在固有模式进行实证分析.最后,引入双向门控循环单元(BiGRU)作为深度学习模型进行股票预测.结果表明,投资者情绪指数显著影响上证指数波动,并且积极情绪和消极情绪的影响是不对称的;考量投资者情绪指标进行信号分解,能够有效提高股票的预测性能,相对于单纯分析股票时间序列的BiGRU预测模型,VMD-BiGRU模型的MAE,RMSE,RMSPE,MAPE等指标降低超过30%;在基准场景下,VMD-BiGRU模型性能优于多个计量经济模型和机器学习模型,对于收益率和波动率预测的MAE,RMSE,RMSPE,MAPE等指标普遍降低超过40%;模型在五粮液、工商银行、科大讯飞3只个股的推广中保持着同样稳定精确的预测效果.
Deep Learning Prediction of Stock Market Combining Media Information and Signal Decomposition
Accurate prediction of future returns and risks in the stock market not only helps rational investors to invest more rea-sonably and effectively,but also provides useful guidance for policy makers and investors.Applying financial news headlines,this paper constructs an investor sentiment index that takes into account the cumulative effects of news using text analysis methods such as word embedding and machine learning.The Shanghai Composite Index is used as an example,and the empirical analysis decomposes the index's fluctuation data into various inherent modes using the variational mode decomposition(VMD)method.Finally,the bidirectional gated recurrent unit(BiGRU)is introduced as a deep learning model for price fluctuation prediction.The results show that the investor sentiment index significantly affects the fluctuation of the Shanghai Composite index,and the influ-ence of positive emotions and negative emotions is asymmetric.Considering the investor sentiment indicators and conducting the signal decomposition can effectively improve the prediction performance of stocks,and improve the prediction effect by up to 20%.In the benchmark scenario,the performance of VMD-BiGRU models is better than that of multiple econometric models and machine learning models,with higher accuracy and effectiveness,and the general performance of yield and volatility prediction is improved by more than 40%.The performance of model promotion in three stocks,Wuliangye,Industrial and Commercial Bank of China and IFLYTEK,maintain the same stable and accurate prediction effect.

Stock predictionInvestor sentimentNews media informationSignal decompositionGating unit

刘广、易鸿

展开 >

广州大学经济与统计学院 广州 510000

股票预测 投资者情绪 新闻媒体信息 信号分解 门控单元

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 36