首页|基于SAMNV3的滚动轴承智能故障诊断方法

基于SAMNV3的滚动轴承智能故障诊断方法

扫码查看
滚动轴承是机械设备的关键部件,为了对滚动轴承的故障类别进行有效识别,提出了一种融合自注意力机制(Self-At-tention,SA)和轻量级网络MobileNetV3的SAMNV3滚动轴承智能故障诊断模型.利用该模型中自注意力机制对特征进行自适应加权的优点以及轻量级网络MobileNetV3体积较小的优点,通过直接将两个不同数据集的原始振动信号输入SAMNV3模型中,进行故障的特征提取与识别分类,从而实现端到端的滚动轴承智能故障诊断.在两种不同的数据集上进行验证,结果表明该模型具有较高的准确率和较低的计算复杂度,可以有效提高滚动轴承故障诊断的准确性和可靠性.
Intelligent Fault Diagnosis Method for Rolling Bearing Based on SAMNV3
In order to accurately identify the fault categories of rolling bearings,which are essential components of mechanical equipment,this paper proposes a SAMNV3 intelligent fault diagnosis model for rolling bearings that integrates the self-attention(SA)mechanism and the lightweight network MobileNetV3.This model takes advantage of the adaptive weighting of the features by the self-attention mechanism and the small size of the lightweight network MobileNetV3 to achieve end-to-end rolling bearing intelligent fault diagnosis by directly inputting the original vibration signals from two different datasets into the SAMNV3 model for feature extraction and fault identification and classification.The results of the validation of the two different datasets show that the model has high accuracy and low computational complexity,which can effectively improve the accuracy and reliability of rolling bearing fault diagnosis.

Rolling bearingIntelligent fault diagnosisSelf-attention mechanismLightweight networkMobileNetV3

张兰昕、向玲、李显泽、陈锦鹏

展开 >

华北电力大学机械工程系 河北保定 071003

滚动轴承 智能故障诊断 自注意力机制 轻量级网络 MobileNetV3

国家自然科学基金国家自然科学基金

5207517052175092

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 20