首页|面向产线AI质检的少样本评测方法研究和验证

面向产线AI质检的少样本评测方法研究和验证

扫码查看
随着工业4.0时代的到来,制造业与人工智能的深度融合已成为了业界的重要发展趋势,工业质检是其中的重要突破口,但目前业界缺乏对工业质检产品进行评估的标准方法,各质检产品的性能往往不透明,不利于优化迭代及规模推广.针对上述问题,提出了一种面向工业界产线应用需求的AI工业质检算法评测方法,可在工业领域样本数量少且不均衡的情况下,面向产线落地应用需求,对AI工业质检产品及其竞品进行对标评估.该评测方法通过交叉验证法构建数据集,从而避免数据集规模小且不均衡导致的评测结果波动较大的问题,通过灰盒测试法避免数据集来源单一导致的评测结果不客观问题,并根据产线实际生产需求制定相关评估指标,可真实反映产线应用场景下质检产品检测性能.将上述方法应用于光伏电池片EL检测产品的对标评测中进行验证,结果表明该评测方法具备可行性,且能客观反映各产品的真实性能.最后,基于对评测结果的分析对比,为AI工业质检产品的优化提供了一些建议.
Study and Verification on Few-shot Evaluation Methods for AI-based Quality Inspection in Production Lines
With the advent of industry 4.0,the deep integration of manufacturing industry with artificial intelligence(AI)has be-come an important development trend.Industrial quality inspection has emerged as a significant breakthrough point.However,there is currently a lack of standardized methods for evaluating industrial quality inspection products in the industry.The per-formance of various quality inspection products is often opaque,making it difficult to optimize and scale up.In response to this situation,this paper proposes an AI-based industrial quality inspection algorithm evaluation method,which is suitable for the ap-plication needs of production lines in the industrial field.This method can evaluate AI-based industrial quality inspection products and their competitors in situations where the sample size is small and imbalanced.The evaluation method constructs a data set through cross-validation to avoid the problem of large evaluation result fluctuations caused by small and imbalanced data sets.It also uses gray box testing to avoid the subjectivity in evaluation results caused by a single source of data.Furthermore,it formu-lates relevant evaluation indicators based on the actual production needs of the production line,which can truly reflect the detec-tion performance of quality inspection products in the production line application scenario.The proposed method is validated through benchmark evaluation of EL testing products for photovoltaic cells,demonstrating its feasibility and its ability to objec-tively reflect the true performance of various products.Finally,based on the analysis and comparison of the evaluation results,some suggestions are provided for the optimization of AI-based industrial quality inspection products.

Industrial quality inspection by AIDeep learningObject detectionDefect detectionEvaluation methodsPhotovoltaic cell EL inspection

焦若丹、高东辉、黄艳华、刘硕、段宣翡、王蕊、刘伟东

展开 >

中国移动通信有限公司研究院 北京 100053

AI工业质检 深度学习 目标检测 缺陷检测 评测方法 光伏电池EL检测

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 21