首页|基于域对抗统计特性增强的跨域故障诊断方法

基于域对抗统计特性增强的跨域故障诊断方法

扫码查看
故障诊断对于保障大型机械设备安全稳定运行具有十分重要的意义,但获得的数据存在严重标签缺失或缺少的问题,且不同工况下的数据特征分布显著不同.传统机器学习或微调的方法存在特征提取模式单一、视角固定的局限性,使得同类不同域的特征难以对齐.针对以上问题,文中提出了一种基于域对抗统计特性增强的跨域故障诊断方法DASEM(Domain-Ad-versarial Statistical Enhancement Model).该方法采用直推式深度迁移学习技术,在域对抗框架下增强全局统计特性的表示,并与局部结构模式融合,构建双路径特征提取器.同时,利用域标签和数据结构之间的平衡关系来描述域对抗的表现形式,并通过类标签输出故障诊断结果.在西储大学轴承数据集和江南大学轴承数据集上的实验结果显示,DASEM在各个跨域任务上的平均精度分别达到了94.90%和93.15%,证明了该方法的有效性.
Domain-adversarial Statistical Enhancement for Cross-domain Fault Diagnosis
Fault diagnosis is of great importance in ensuring the safe and stable operation of large-scale mechanical equipment.However,the obtained data often suffer from severe label shortages or lack of labels,and the data distribution varies significantly at different operating conditions.Traditional machine learning or fine-tuning methods have limitations in feature extraction,with a single pattern and fixed perspective,making it difficult to align features of the same class but different domains.To address these issues,this paper proposes a domain-adversarial statistical enhancement-based cross-domain fault diagnosis method called DASEM.This method utilizes direct transfer deep learning techniques to enhance the representation of global statistical charac-teristics within the framework of domain adversarial learning.It also integrates these characteristics with local structural patterns by constructing a dual-path feature extractor.The balance between domain labels and data structures is utilized to describe the manifestation of domain adversarial learning,and the fault diagnosis results are outputted based on class labels.Experimental re-sults on the bearing datasets from Western Reserve University and Jiangnan University demonstrate the effectiveness of DASEM,achieving an average accuracy of 94.90%and 93.15%,respectively,for various cross-domain tasks.

Fault diagnosisFeature distribution alignmentDomain adversarialGlobal statistical characteristics

朱俞豪、张淞钊、张永

展开 >

湖州师范学院信息工程学院 浙江湖州 313000

辽宁师范大学计算机与信息技术学院 辽宁大连 116081

故障诊断 特征分布对齐 域对抗 全局统计特性

辽宁省教育厅科学研究经费项目湖州市科技计划湖州市科技计划

LJKZ09652022GZ082023ZD2004

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 19