首页|基于XGBoost的电网物资供应商履约风险预测

基于XGBoost的电网物资供应商履约风险预测

扫码查看
电网物资供应商履约质量是电网安全稳定运行的基础,供应商履约涉及环节众多且风险因素复杂,使得当前对其研究较为匮乏且大多停留在理论业务分析层面.针对这一问题,提出基于XGBoost(Extreme Gradient Boosting)的供应商履约风险预测模型,充分考虑业务全流程中的各种风险因素,综合内部供应链运行、知识图谱数据以及外部天眼查、疫情等数据,基于特征工程构造了191个风险特征进行初始训练,在模型优化后对筛选出的49个特征再次训练,兼顾实际业务中的预测准确性和特征可解释性要求,采用SHAP(SHapley Additive exPlanations)值方法进行模型解释.实验结果表明,对比其他3种主流机器学习算法,所提模型准确率、精确率、KS值分别高达93.05%,94.45%,45.38%,进而验证了XGBoost算法在履约风险预测中的可行性和优越性.该模型可应用到电网物资供应链中,进一步指导业务应用.
Performance Risk Prediction of Power Grid Material Suppliers Based on XGBoost
The performance quality of power grid material suppliers is the basis for the safe and stable operation of power grid,which involves many links and complex risk factors,causing the current research on it is relatively scarce and stays at the level of theoretical analysis.In order to solve this problem,a supplier performance risk prediction model based on XGBoost is proposed,which fully considers various risk factors during the whole process,integrates internal supply chain operation,knowledge map da-ta,external eye inspection,epidemic situation and other data,constructs 191 risk features based on feature engineering for initial training,and retrains 49 selected features after model optimization,taking into account the requirements of prediction accuracy and feature interpretability in actual business,and uses SHAP method to explain the model.Experimental results show that,com-pared with other three mainstream machine learning algorithms,the accuracy rate,precision rate and KS value are as high as 93.05%,94.45%and 45.38%,which further verifies the feasibility and superiority of XGBoost model in the performance risk prediction.The prediction model can be applied to the power grid supply chain business to further guide the practical application.

XGBoostFeature engineeringSupplier performanceRisk predictionPower grid

李金霞、卞华星、温富国、胡天牧、秦诗涵、吴涵、马晖

展开 >

国网江苏省电力有限公司物资分公司 南京 210036

江苏电力信息技术有限公司 南京 210000

中国科学院信息工程研究所 北京 100085

XGBoost 特征工程 供应商履约 风险预测 电网

国家电网江苏省电力公司科技项目

J2022071

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(z1)
  • 15