计算机科学2025,Vol.52Issue(1) :1-33.DOI:10.11896/jsjkx.240100109

基于预训练语言模型的知识图谱研究综述

Survey of Research on Knowledge Graph Based on Pre-trained Language Models

曾泽凡 胡星辰 成清 司悦航 刘忠
计算机科学2025,Vol.52Issue(1) :1-33.DOI:10.11896/jsjkx.240100109

基于预训练语言模型的知识图谱研究综述

Survey of Research on Knowledge Graph Based on Pre-trained Language Models

曾泽凡 1胡星辰 2成清 2司悦航 2刘忠2
扫码查看

作者信息

  • 1. 国防科技大学系统工程学院 长沙 410073;国防科技大学大数据与决策实验室 长沙 410073;福建省军区 福州 350001
  • 2. 国防科技大学系统工程学院 长沙 410073;国防科技大学大数据与决策实验室 长沙 410073
  • 折叠

摘要

大语言模型时代,知识图谱作为一种结构化的知识表示方式,在提升人工智能的可靠性、安全性和可解释性方面发挥着不可替代的作用,具有重要的研究价值和实际应用前景.近年来,凭借在语义理解和上下文学习方面的优越性能,预训练语言模型已经成为了知识图谱研究的主要手段.系统梳理了基于预训练语言模型的知识图谱研究的相关工作,包括知识图谱构建、表示学习、推理、问答等,介绍了相关模型和方法的核心思路,并依据技术路径建立了分类体系,对不同类型方法的优缺点进行了对比分析.此外,对预训练语言模型在事件知识图谱和多模态知识图谱这两种新型知识图谱中的应用现状进行了综述.最后,总结了当前基于预训练语言模型的知识图谱研究面临的挑战,展望了未来的研究方向.

Abstract

In the era of large language models(LLMs),knowledge graphs(KGs),as a structured representation of knowledge,play an irreplaceable role in enhancing the reliability,security,and interpretability of artificial intelligence.With its superior per-formance in semantic understanding,pre-trained language models(PLMs)have become the main approach in knowledge graph re-search in recent years.This paper systematically reviews the research works on PLM-based knowledge graphs,including know-ledge graph construction,representation learning,reasoning,and question answering.The core ideas of the relevant models and methods are introduced and a classification system is established based on the technological approaches.A comparative analysis of the advantages and disadvantages of different categories of methods is provided.In addition,the application status of pre-trained language models in two new types of knowledge graphs,event knowledge graphs and multimodal knowledge graphs,is reviewed.Finally,the challenges faced by current research on knowledge graphs based on pre-trained language models are summarized,and future research directions are prospected.

关键词

知识图谱/预训练语言模型/大语言模型/多模态/事件知识图谱

Key words

Knowledge graph/Pre-trained language model/Large language model/Multi-modal/Event knowledge graph

引用本文复制引用

出版年

2025
计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
段落导航相关论文