首页|面向联邦大语言模型训练的传输优化技术综述

面向联邦大语言模型训练的传输优化技术综述

扫码查看
随着人工智能技术的快速发展,各类大型语言模型不断涌现.但是专用大语言模型的用户及数据集大多具有隐私性和安全性要求,数据安全隐私问题亟待解决.在此背景下,联邦大语言模型应运而生并得到越来越多的关注.由于大型语言模型庞大的数据量以及联邦学习的分布式架构,海量的参与节点与云服务器间进行大量的模型交换会产生较高的通信成本.为提升模型收敛速率,研究人员对面向联邦大语言模型训练的传输优化技术展开了研究.文章分析了联邦大语言模型所面临的挑战;综述了基于模型微调的传输优化方法、基于模型压缩的传输优化方法以及基于分布式并行处理的传输优化的优化问题;介绍了已有的开源联邦大语言模型以及所用到的传输优化技术,并对未来研究方向进行了展望.
Survey on Transmission Optimization Technologies for Federated Large Language Model Training
With the rapid development of artificial intelligence technology,various types of large language models are emerging.However,most users and datasets participating in dedicated large language models have certain requirements for privacy and se-curity,the data security and privacy issues need to be solved urgently,and federated large language models have emerged and gained more and more attention.Due to the huge data volume of large language models and the distributed architecture of federa-ted learning,a large number of model exchanges between a large number of participating nodes and cloud servers result in high communication costs.In order to improve the model convergence rate,researchers have investigated transmission optimization techniques for federated large language model training.This paper analyzes the challenges of federated large language models,re-views the optimization problems of transmission optimization methods based on model fine-tuning,transmission optimization methods based on model structure compression,and transmission optimization based on distributed parallel processing;introduces existing open-source federated large language models and the transmission optimization techniques used,and gives an outlook on future research directions.

Federated learningLarge language modelsTransmission optimizationCommunication overheadModel compression

顿婧博、李卓

展开 >

网络文化与数字传播北京市重点实验室(北京信息科技大学) 北京 100101

北京信息科技大学计算机学院 北京 100101

联邦学习 大语言模型 传输优化 通信开销 模型压缩

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)