首页|提示学习中思维链生成和增强方法综述

提示学习中思维链生成和增强方法综述

扫码查看
大语言模型凭借其卓越的语言理解和文本生成能力,在多个领域取得了突破性进展.尽管如此,其在处理复杂推理任务时的表现往往不尽如人意,准确率的提升空间依然巨大.针对这一挑战,学术界提出了思维链策略,这是一种创新的方法,通过让模型生成推理过程来增强模型的推理性能.文中通过全面梳理和深入分析现有的思维链研究,不仅总结了其核心概念和结构框架,还详细探讨了推理生成方法和增强方法.进一步对思维链在不同任务场景中的应用进行了广泛探讨,展示了思维链在提升模型性能方面的潜力.同时,也对思维链的局限性进行了批判性分析,指出了思维链方法存在的不足.最后,对思维链的未来发展进行了前瞻性展望,旨在为思维链未来的研究方向提供指导,并为该领域的研究者提供有价值的参考和启示.
Survey of Chain-of-Thought Generation and Enhancement Methods in Prompt Learning
Large language models have made breakthroughs in several domains due to their superior language understanding and text generation capabilities.However,their performance in handling complex reasoning tasks is not very good and the accuracy needs to be improved.As a result,academics have proposed chain of thought(CoT),an innovative approach that aims to enhance the reasoning performance of models by allowing them to generate reasoning processes.In this paper,by comprehensively com-bing and deeply analyzing the existing research on CoT,we not only summarize its concepts and structural framework,but also explore the inference generation method and enhancement method in detail.The application of CoT in different task scenarios is further extensively explored,demonstrating the potential of CoT in enhancing model performance.At the same time,this paper also critically analyzes the limitations of CoT.Finally,this paper provides a prospective outlook on the future development of the chain-of-thinking strategy,aiming to provide guidance on the future research direction of CoT and to provide valuable references and insights for researchers.

Chain of thoughtLarge language modelPrompt learningReasoning generationReasoning enhancement

郑明琪、陈晓慧、刘冰、张兵、张然

展开 >

信息工程大学数据与目标工程学院 郑州 450000

思维链 大语言模型 提示学习 推理生成 推理增强

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)