首页|SWARM-LLM:基于大语言模型的无人集群任务规划系统

SWARM-LLM:基于大语言模型的无人集群任务规划系统

扫码查看
针对无人集群系统自主智能性不足、异构无人集群协同效率低、任务分配不均衡等问题,文中面向无人集群自主规划、高效协作、智能决策的需求,首先提出了一种新的基于大语言模型的无人集群任务规划系统框架(SWARM-LLM).该框架利用大语言模型将高层次的任务指令转化为具体的智能无人集群任务规划方案,通过任务分解、任务分配、任务执行等多个阶段来实现无人集群协同任务.进一步地,设计了一套适用于无人集群规划的提示工程方法-规划链(Planning Chain,PC),用来指导和优化上述各阶段的实施.最终,在无人集群仿真环境(AirSim)中构建了不同类别和复杂度的任务,并进行了评估实验.与其他基于优化算法和机器学习的算法相比,实验结果证明了 SWARM-LLM框架的有效性,并在任务成功率上展现出了显著的优势,平均性能提升了 47.8%.
SWARM-LLM:An Unmanned Swarm Task Planning System Based on Large Language Models
In response to the issues of insufficient autonomous intelligence in unmanned cluster systems,low collaborative effi-ciency of heterogeneous unmanned clusters,and unbalanced task allocation,this paper first proposes a new unmanned cluster task planning framework(SWARM-LLM)based on large language models to meet the needs of unmanned swarm systems for autono-mous planning,efficient collaboration,and intelligent decision-making.This framework leverages large language models to trans-form high-level task instructions into specific intelligent unmanned cluster task planning solutions,achieving collaborative tasks of unmanned clusters through multiple stages such as task decomposition,task allocation,and task execution.Furthermore,this pa-per designs a prompt engineering method specifically suited for unmanned swarm planning,called the planning chain(PC),to guide and optimize the implementation of these stages.Finally,we construct tasks of various categories and complexities in an un-manned swarm simulation environment(AirSim)and conduct evaluation experiments.Compared with other algorithms based on optimization and machine learning,experimental results demonstrate the effectiveness of the SWARM-LLM framework,showing a significant advantage in task success rates,with an average performance improvement of 47.8%.

Task planningUnmanned swarmsLarge language modelsCollaborative strategiesIntelligent decision-making

李婷婷、王琪、王嘉康、徐勇军

展开 >

中国科学院计算技术研究所 北京 100190

中国科学院大学 北京 100049

任务规划 无人集群 大语言模型 协同策略 智能决策

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)