首页|基于预训练大模型的行动方案生成方法

基于预训练大模型的行动方案生成方法

扫码查看
围绕生成式人工智能赋能指挥决策需求,分析了指挥决策中方案生成问题的难点挑战和新兴预训练大语言模型技术的应用前景,提出了一种基于预训练大模型的作战行动方案生成方法——COA-Gen.首先,为了使生成的行动方案符合目标,设计了多轮方案生成框架;其次,构建了多要素中文提示词模板用于整合海量多源信息;最后,针对特定小领域的数据缺乏问题,引入知识增强技术以提升大模型规划效能.为了验证所提行动方案的效果,制定了基于《星际争霸Ⅱ》游戏引擎和"虎爪"想定的方案验证环境.实验结果表明,该方法具有较好的鲁棒性,可以较好地依从指挥员意图,验证了大模型用于作战行动方案生成的可行性.此外,不同预训练大模型在相同任务中展现出不同的效果,表明在实际应用中选择不同的预训练大模型可能会生成具有不同风格的行动方案,从而影响最终的行动结果.
COA Generation Based on Pre-trained Large Language Models
Focusing on empowering the command and control(C2)procedure of generative AI,we analyze the challenges of course of action(COA)generation in C2 and the prospects of pre-trained large language models(LLMs).Then,a COA generation me-thod based on pre-trained LLMs,COA-Gen,is proposed.Firstly,a multi-round generation framework is designed to align the generated plans with objectives.Secondly,a multi-factor prompt templates is constructed to integrate vast amounts of multi-source information.Lastly,knowledge-augmented generation technology is introduced to improve the generation quality of the few-shot military domain.To validate the effectiveness of the generated plans,an emulation environment based on the StarCraft Ⅱ engine and the"Tiger Claw"scenario is established.The results show the robustness of the method and its alignment with the commander's intention.The feasibility of using LLMs for COA generation has been verified.Additionally,different pre-trained models exhibit varying performances in the same task,indicating that the choice of model in real-world applications can lead to ac-tion plans with different styles,thereby affect the ultimate outcomes.

Large language modelGenerative AIIntelligent decision-makingCommand and controlCourse of action

颜玉松、周圆、王琮、孔圣麒、王权、黎敏讷、王之元

展开 >

国防科技大学计算机学院 长沙 410005

智能博弈与决策实验室 北京 100000

大模型 生成式人工智能 智能决策 指挥与控制 作战行动方案

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)