首页|面向远程内存图数据库的应用感知分离式存储设计

面向远程内存图数据库的应用感知分离式存储设计

扫码查看
图数据在各种应用中日益普及,其因涵盖多种实体类型和存在丰富的关联关系而备受关注.对于图数据库用户而言,高效的图查询服务是保障系统性能的关键因素.随着数据量增加,单机图数据库很难满足将所有数据存储在内存中的需求,而分布式图数据库在拓展性和资源利用率方面受到挑战.基于RDMA的远程内存系统的引入为克服这些挑战提供了一种新的选择,通过分离计算和存储资源,实现了更为灵活的内存使用方式.然而,在使用远程内存的情况下如何最大程度地优化图查询性能成为了当前研究的重点问题.文中首先分析了利用操作系统分页机制透明使用远程内存构建图数据库存在的问题,并在应用层次上设计了远程内存图数据库的存储模型.根据不同数据的特点和访问模式,设计了属性图在远程内存中的存储结构,优化了数据布局和访问路径.实验结果表明,在本地内存受限的情况下,与透明使用远程内存相比,应用感知的设计方式的端到端性能最高提升了 12倍.
Application-aware Disaggregated Storage Design for Remote Memory Graph Database
Graph data is becoming more widespread across various applications due to its features to represent multiple entity types and rich associated relationships.For users of graph databases,efficient graph query service is crucial to ensure system per-formance.As the amount of data grows,the single-machine graph database is difficult to meet the demand of storing all the data in memory,while distributed graph databases,which spread the data across the memory of multiple machines,face challenges in scalability and resource utilization rate.A new solution to these challenges is the introduction of RDMA-based remote memory systems.These systems separate the tasks of computing and storing graph data,offering a more flexible way to use memory.Yet,a big challenge in current solutions is how to ensure the performance of graph query when using remote memory.This study takes a close look at the challenges that come up when building remote memory graph databases on general-purpose far memory plat-forms,which use remote memory transparently.It suggests a new approach,where the design of the remote memory graph data-base is aware of how it's being used.This design method creates a storage model that understands the different types of property graph data and how it's accessed.Specifically,the study explains how to make sure the data is arranged and accessed in the best way.Experimental results show that when the local memory is limited,the awareness method outperforms the transparent ap-proach,giving a 12x improvement in graph query performance.

Graph queryGraph databaseGraph storageRemote memoryProperty graph model

李纯羽、邓龙、李永坤、许胤龙

展开 >

中国科学技术大学计算机科学与技术学院 合肥 230026

高性能计算安徽省重点实验室 合肥 230026

图查询 图数据库 图存储 远程内存 属性图模型

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)