首页|联邦学习在医学图像处理任务中的研究综述

联邦学习在医学图像处理任务中的研究综述

扫码查看
在医学领域,由于患者隐私问题,图像很难集中收集和标注,这给深度学习模型的训练和部署带来了较大困难.联邦学习作为一种能有效保护数据隐私的分布式学习框架,能够在参与方不共享数据的基础上进行联合建模,从技术上打破数据孤岛,其凭借这些优势在许多行业已经得到广泛应用.由于与医学图像处理的需求高度契合,近年来也涌现出许多应用于医学图像处理的联邦学习研究,然而大部分新的方法仍未被归纳分析,不利于后续的进一步探索.文中对联邦学习进行了简单的介绍,列举了其在医学图像处理方面的部分应用,并根据改进的方向对目前已有的研究进行了分类总结.最后,讨论了目前医学图像方向联邦学习所面临的问题和挑战,并对未来的研究方向进行了展望,希望给后续研究提供一定的帮助.
Review of Federated Learning in Medical Image Processing
In the medical field,due to patient privacy concerns,it is difficult to collect and label images,which brings great diffi-culties to the training and deployment of deep learning models.As a distributed learning framework that can effectively protect data privacy,federated learning can conduct joint modeling on the basis that participants do not share data,and technically break the data island.With these advantages,it has been widely used in many industries.Due to the high degree of compliance with the needs of medical image processing,many federated learning research works applied to medical image processing have emerged in recent years.However,most of the new methods have not been summarized and analyzed,which is not conducive to further explo-ration.This paper gives a brief introduction to federated learning,lists some of its applications in medical image processing,and classifies and summarizes the existing research according to the improvement direction.Finally,the problems and challenges of federated learning in medical image are discussed,and future research directions are prospected,hoping to provide some help for subsequent research.

Federated learningMedical imageDeep learningImage processingDistributed learningPrivacy protection

刘育铭、代煜、陈公平

展开 >

南开大学人工智能学院 天津 300350

联邦学习 医学图像 深度学习 图像处理 分布式学习 隐私保护

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)