首页|基于最大影响力集合的主动学习方法

基于最大影响力集合的主动学习方法

扫码查看
随着深度学习技术的不断进步,其已经在许多领域广泛应用.但深度模型的训练需要消耗大量标注数据,时间与资源成本高,如何利用尽可能少的标注数据达到最佳模型效果成为一个重要的研究课题.主动学习的提出正是为了解决这一问题,其旨在选择最有价值的样本进行标注并用于模型训练.传统的主动学习策略通常关注不确定性或多样性,旨在查询最困难或最具代表性的样本.然而,在主动学习问题中,这些方法通常没有考虑标注样本和无标注样本之间的交互作用.另一类主动学习方法则使用辅助网络进行样本选择,但这些方法通常会增加计算复杂度.在上述背景下,提出一种新的主动学习算法,旨在通过考虑不同样本之间的相互作用,综合衡量候选样本对其他样本的影响力与不确定性,来最大限度地提高模型的整体性能增益.所提算法首先根据样本隐含层表征之间的距离估计样本相互之间的影响力,进一步根据候选样本的影响力与无标注样本的不确定性估计该样本能够带来的潜在增益,并迭代地选择全局增益最大的样本进行标注.进一步在一系列不同领域的多种任务上将该方法与其他主动学习策略进行了比较,实验结果表明,该方法在所有任务中的表现均显著优于所有基线方法.进一步的量化分析实验也证明该方法在不确定性和多样性之间取得了良好的权衡,并探究了主动学习不同阶段应该注重的因素.
Active Learning Based on Maximum Influence Set
With the continuous progress of deep learning,it has been widely applied in numerous fields.However,the training of deep models requires a large amount of labeled data,and the cost of time and resources is high.How to maximize the model per-formance with the least amount of labeled data has become an important research topic.Active learning aims to address this issue by selecting the most valuable samples for annotation and utilizing them for model training.Traditional active learning approaches usually concentrate on uncertainty or diversity,aiming to query the most difficult or representative samples.Nevertheless,these methods typically only take into account one-sided effects and overlook the interaction between labeled and unlabeled data in ac-tive learning scenarios.Another type of active learning method utilizes auxiliary networks for sample selection,but these methods usually result in higher computational complexity.This paper proposes a novel active learning approach designed to optimize the model's total performance gain by taking into account sample-to-sample interactions and comprehensively measuring local uncer-tainty and the influence of candidate samples on other samples.The method first estimates the influence of samples on each other based on the distance between the hidden layer representations of the samples,and further estimates the potential gain that the sample can bring based on the influence of candidate samples and the uncertainty of unlabeled samples.The sample with the high-est global gain is iteratively chosen for annotation.On a series of tasks across several domains,the study further compares the proposed method with other active learning strategies.Experimental results demonstrate that the proposed method outperforms all competitors in all tasks.Further quantitative analysis experiments have also demonstrated that it balances uncertainty and di-versity well,and explores the factors that should be emphasized at different stages of active learning.

Active learningDeep learningUncertainty

李雅和、谢志鹏

展开 >

复旦大学计算机科学技术学院 上海 200438

主动学习 深度学习 不确定性

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)