首页|基于多关系图注意力网络的社交机器人检测

基于多关系图注意力网络的社交机器人检测

扫码查看
现阶段社交机器人已经广泛存在于社交平台,社交机器人的存在使得网络上的舆论环境可以被人为操纵,这样不仅损害了绿色和谐的网络环境,同时也导致人们正常的网络生活受到极大影响.现有的检测方法可以分为基于特征、基于文本和基于图的方法,其中基于图数据的检测方法大多忽略了图中关系的异质性,并且由于图神经网络存在过渡平滑现象而不能进行深度检测.针对这一问题,提出基于多关系图注意力网络的社交机器人检测方法,在训练时首先将不同关系下的子图抽取出来,然后对子图中的节点采用注意力机制进行聚合,在不同关系下进行节点表示学习并得到节点表示,最后利用通道注意力融合不同关系下的同一节点得到节点表示;同时采用基于LSTM注意力的后连接操作让节点可以自适应地选择邻域进行聚合,以此来缓解过度平滑现象.在Cresci15,Twibot20和 MGTAB这3个数据集上的实验结果表明,与11个模型中评价指标的最优值相比,该模型的准确率分别提升了 0.47%,1.19%和0.38%,验证了多关系图注意力网络进行社交机器人检测的有效性.
Social Bots Detection Based on Multi-relationship Graph Attention Network
At present,social bots have gained extensive utilization across social platforms and the existence of social bots makes the public opinion environment on the network artificially manipulated.This not only compromises the integrity of a healthy and harmonious online atmosphere but also significantly disrupts people's regular online activities.Existing detection methods can be divided into feature-based,text-based,and graph-based methods.However,graph-based detection methods predominantly ignore the heterogeneous relationships,and cannot perform deep detection due to the transition smoothing phenomenon in graph neural networks.To solve the above problems,a social bots detection method based on a multi-relationship graph attention network is proposed.Firstly,we extract subgraphs with different relationships,then apply the attention mechanism to aggregate the nodes within the subgraph and conduct node representation learning across diverse relationships,resulting in the acquisition of node rep-resentations.Finally,we use channel attention to fuse the same node under different relationships to obtain node representation,while using the post-connection operation based on LSTM attention to allow nodes to adaptively select neighborhoods for aggre-gation,thereby alleviating the over-smoothing phenomenon.Experiments are conducted on three datasets:Cresci15,Twibot20,and MGTAB,and the experimental results show that,compared with the optimal values of the evaluation indicators of 11 models,the accuracy of the model is increased by 0.47%,1.19%and 0.38%,respectively,which demonstrates the effectiveness of the multi-relationship graph attention network for social bots detection.

Heterogeneous graphGraph attentionNodes representation learningLSTM attentionSocial bots

孟令君、陈鸿昶、王庚润

展开 >

郑州大学网络空间安全学院 郑州 450003

信息工程大学国家数字交换系统工程技术研究中心 郑州 450003

异质图 图注意力 节点表示学习 LSTM注意力 社交机器人

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)