首页|计算机视觉领域对抗样本检测综述

计算机视觉领域对抗样本检测综述

扫码查看
随着数据量的增加和硬件性能的提升,深度学习在计算机视觉领域取得了显著进展.然而,深度学习模型容易受到对抗样本的攻击,导致输出发生显著变化.对抗样本检测作为一种有效的防御手段,可以在不改变模型结构的前提下防止对抗样本对深度学习模型造成影响.首先,对近年来的对抗样本检测研究工作进行了整理,分析了对抗样本检测与训练数据的关系,根据检测方法所使用特征进行分类,系统全面地介绍了计算机视觉领域的对抗样本检测方法;然后,对一些结合跨领域技术的检测方法进行了详细介绍,统计了训练和评估检测方法的实验配置;最后,汇总了一些有望应用于对抗样本检测的技术,并对未来的研究挑战进行展望.
Adversarial Sample Detection in Computer Vision:A Survey
With the increase in data volume and improvement in hardware performance,deep learning(DL)has made significant progress in the field of computer vision.However,deep learning models are vulnerable to adversarial samples,causing significant changes in the output.As an effective defense method,adversarial sample detection can prevent adversarial samples from affecting the deep learning model without changing the model structure.This paper organizes the research work on adversarial example de-tection in recent years,analyzes the relationship between adversarial example detection and training data,classifies them according to the characteristics used in the detection method,and systematically and comprehensively introduces adversarial sample detec-tion methods in the field of computer vision.Then,some detection methods that combine cross-domain technologies are introduced in detail,and the experimental configurations for training and evaluating detection methods are statistically analyzed.Finally,some technologies that are expected to be applied to adversarial sample detection are summarized,and future research challenges and development directions are prospected.

Deep learningAdversarial sample attacksAdversarial sample detectionAI securityImage classification

张鑫、张晗、牛曼宇、姬莉霞

展开 >

郑州大学网络空间安全学院 郑州 450001

智能警务四川省重点实验室 四川泸州 646000

四川大学计算机学院 成都 610065

深度学习 对抗样本攻击 对抗样本检测 人工智能安全 图像分类

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)