首页|图联邦学习:问题、方法与挑战

图联邦学习:问题、方法与挑战

扫码查看
图作为一种高效、灵活、通用的数据结构,在多个学科领域得到了广泛应用.近年来,基于图的深度学习算法不断涌现,并在社交网络、生物信息学、推荐系统等领域取得显著成效.尽管公开的图数据量在增加,但高质量的数据往往分散在不同的数据所有者手中.随着社会对数据隐私保护要求的提高,现有的图学习算法面临着许多挑战.图联邦学习作为一种有效的解决方案应运而生.文中系统回顾了图联邦学习领域近五年的研究进展,将该领域的核心问题划分为3个部分,并在结构上进行了垂直整合,在关系上进行了递进阐述,包括:1)原始图数据差异导致的结构异构性;2)图联邦特性导致的模型聚合问题;3)模型整体调优方面的挑战.针对每个问题,详细分析了代表性工作及其优缺点,并总结了图联邦学习领域的典型应用和未来挑战.
Federated Graph Learning:Problems,Methods and Challenges
Graph has been widely used in various fields for many years as an efficient,flexible,and versatile data structure.In re-cent years,graph-based deep learning algorithms have emerged,achieving significant success in areas like social network,bioinfor-matics,and recommendation systems.Although publicly graph data online is increasing,high-quality data remains scattered among different owners.With society's growing demand for data privacy protection,existing graph learning algorithms require enhancement.Graph federated learning is a novel approach to addresses this issue.This paper systematically reviews the research progress in the field of federated graph learning over the past five years.The core problems in the field are divided into three parts,and the structure is vertically integrated and the relationships are progressively explained:1)structural heterogeneity from differences in raw graph data;2)model aggregation issues due to federated graph learning characteristics;3)overall model tuning.For each section,it provides a detailed analysis of representative works and their advantages and disadvantages,summarizes the typical applications and future challenges in the field of federated graph learning.

Federated learningGraph neural networkFederated graph learningPrivacy computing

王鑫、熊书博、孙凌云

展开 >

浙江工业大学计算机科学与技术学院 杭州 310023

浙江大学计算机科学与技术学院 杭州 310058

联邦学习 图神经网络 图联邦学习 隐私计算

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)