首页|基于SE注意力多源域对抗网络的射频指纹识别

基于SE注意力多源域对抗网络的射频指纹识别

扫码查看
射频指纹利用射频前端的硬件特征作为标识符对设备进行识别.针对现有射频指纹识别研究忽略接收机硬件特性的干扰,导致模型在不同接收机设备上泛化性较差的问题,提出一种基于SE(Squeeze-and-Excitation)注意力多源域对抗网络的射频指纹识别方法.该方法采用多个源域有标签数据和少量目标域无标签数据进行对抗训练以提取与接收机域无关的特征;融合SE注意力机制增强模型对发送机射频指纹特征的学习能力;结合极少量目标域有标签数据对模型参数进行微调,进一步提高发送机识别性能.在 Wisig公开数据集上的实验结果表明:该方法在跨接收机场景下可有效识别发送机设备,平均准确率可达83.1%;加入少量有标签数据微调后平均准确率可进一步提高至93.1%.
RF Fingerprint Recognition Based on SE Attention Multi-source Domain Adversarial Network
RF fingerprinting uses the hardware features of RF front-end as identifiers to identify devices.Aiming at the problem that existing RF fingerprinting research ignores the interference of receiver hardware features,resulting in poor generalization of the model on different receiver devices,an RF fingerprinting method based on squeeze and excitation(SE)attention multi-source domain adversarial network is proposed.Multiple source-domain labelled data and a small amount of target-domain unlabelled da-ta are used for adversarial training to extract receiver-domain independent features.Incorporating SE attention mechanism en-hances the model's ability to learn RF fingerprint features from the transmitter.The model parameters are fine-tuned by combi-ning a very small amount of tagged data in the target domain to further improve the performance of transmitter identification.Ex-perimental results on the Wisig dataset show that this method can effectively identify the transmitter device in the cross-receiver scenario,with an average accuracy of up to 83.1%,and the average accuracy can be further improved to 93.1%by adding a small amount of tagged data to fine-tune the model.

RF fingerprint recognitionMulti-source domain adversarialDeep learningPhysical layer securitySE attention

苏超然、张大龙、黄勇、董安

展开 >

郑州大学网络空间安全学院 郑州 450002

射频指纹识别 多源域对抗 深度学习 物理层安全 SE注意力机制

2025

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2025.52(1)