首页|人工智能驱动的小样本主观教育评价系统优化策略——孤立森林与肯德尔和谐系数的集成应用研究

人工智能驱动的小样本主观教育评价系统优化策略——孤立森林与肯德尔和谐系数的集成应用研究

Optimization Strategy of Small-Sample Subjective Education Evaluation System Driven by Artificial Intelligence:An Integrated Application Study of Solation Forest and Kendall's Harmony Coefficient

扫码查看
探索人工智能技术在小样本主观教育评价系统中的应用,采用孤立森林算法和肯德尔和谐系数算法构建一个基于人工智能的监督检测系统,对评价者和评分分值进行双重优化.研究结果显示,此系统在实际教学场景中具有卓越的性能,能显著提升评价结果的准确性和可靠性.这不仅能为教育评价系统提供优化策略,也能为相关领域的数据驱动决策提供理论支持和实践指导.
This study explores the application of artificial intelligence technology in the small-sample subjective education evaluation system,and uses the solation forest algorithm and Kendall's harmony coefficient algorithm to build an AI-based supervision and inspection system to optimize both evaluators and scores.The research results show that this system has excellent performance in practical teaching scenarios,and can significantly improve the accuracy and reliability of evaluation results,which can not only provide optimization strategies for education evaluation systems,but also provide theoretical support and practical guidance for data-driven decision-making in related fields.

educational evaluationartificial intelligencesolation forestsKendall's harmony coefficientoptimal managementsmall sample single item quantitiessubjective rating supervision

陈煜军

展开 >

黎明职业大学 商学院,福建 泉州 362000

教育评价 人工智能 孤立森林 肯德尔和谐系数 优化管理 小样本单项量 主观评分监督

2024

江苏经贸职业技术学院学报
江苏经贸职业技术学院

江苏经贸职业技术学院学报

影响因子:0.268
ISSN:1672-2604
年,卷(期):2024.(6)