首页|基于水动力模型与大数据分析的污水干线优化调度策略

基于水动力模型与大数据分析的污水干线优化调度策略

扫码查看
随着我国城市化的快速发展与国家污水处理要求的逐渐提高,城市的污水排水系统越来越复杂。单纯依靠人工经验来进行污水系统的运维与优化调度的难度逐渐越大。文章以上海市白龙港片区污水主干系统为案例,创新性地提出了通过水动力模型耦合历史大数据分析来进行污水干线系统优化调度的技术方案:该方案通过历史大数据挖掘出各个泵站在污水厂不发生溢流情况下的启闭策略,并将此策略放入经过严格率定验证的排水模型中进行评估。目前得到的优化方案通过模拟可以将2021年的白龙港污水厂的旱天溢流天数从现状的58 d降低至50 d。该优化方案于2022年进行了试运行:相比2021年,在试运行的两个月内将旱天溢流总量降低了 13%。基于此案例分析,最终总结出一种城市污水主干系统获取优化调度策略的方法。
Optimized Controling Strategy of Wastewater Trunk Pipelines Based on Hydrodynamic Model and Big Data Analysis
With the rapid development of urbanization at home and the gradual improvement of national wastewater treatment requirements,the urban wastewater drainage system is becoming more and more complex.As a result,it is increasingly difficult to rely solely on manual experience to operate and optimize the scheduling of the wastewater system.Taking the wastewater system in Bailonggang of Shanghai as a case,this paper innovatively proposed a technical scheme for optimal scheduling of wastewater trunk system by coupling historical big data analysis with hydrodynamic model.The scheme excavated the opening and closing strategy of each pump station without overflow in the WWTP through historical big data,and put this strategy into a drainage model with strict rate verification for evaluation.The optimization scheme obtained so far.Based on modelling,the number of dry overflow days at the Bailonggang WWTP in the entire 2021 could be reduced from the current 58 days to 50 days.This optimization was piloted in 2022.And it reduced the total overflow volume by 13%during the two months of the trial compared to 2021.Based on this case analysis,a method for obtaining optimal scheduling strategies for urban wastewater backbone systems is finally summarized.

wastewater trunk modelbig data analysisoptimized controlingdata extractioncalibration and validation

陈泽伟、纪莎莎、何黎、宋晨曦

展开 >

上海市城市建设设计研究总院<集团>有限公司,上海 200125

污水主干模型 大数据分析 优化调度 数据提取 率定验证

2024

净水技术
上海市净水技术学会,上海市城乡建设和交通委员会科学技术委员会办公室

净水技术

CSTPCD
影响因子:0.643
ISSN:1009-0177
年,卷(期):2024.43(3)
  • 9